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In this lecture we consider formal descriptions of the 

relationships between a finite number of individuals. We may 
have different types of individual
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From the resolution proof we 
can derive a refutation. 
The lower tree demonstrates 
the fact that whatever values 
we choose for the variables, 
we will arrive at a clause that 
is false for our chosen values. 
This suffices to show that, no 
matter what choice of values 
we make, the conjunction is 
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We normally grow refutation 
trees downwards. 
A refutation tree 
demonstrates the fact that 
whatever values we choose 
for the variables, we will arrive 
at a clause that is false for our 
chosen values. This suffices to 
show that, no matter what 
choice of values we make, the 



When resolution ‘fails’
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If we can satisfy all 
clauses in these 

two sets

Then we can 
satisfy all 
clauses in 
these two 

sets

A

If we can satisfy all the Xs, then 
making A true will do the trick.

If we cannot satisfy Xi then we 
must be able to satisfy all the Ys, 
and so making A false will do the 
trick.
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If we have not produced 
{}, and there are no 

remaining opportunities 
for resolution, then every 

remaining literal is a 
pure literal. 

Pure means that its 
negation does not occur.  

We can satisfy the 
remaining clauses by 

making every literal true.

So, once we have resolved all the 
X, ¬X pairs, we can focus on 
clauses not mentioning A.

Eventually we will either produce 
{}, or have a set of clauses with 
no complementary pairs.
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We can satisfy the 
remaining clauses by 

making every literal true. 
This gives a partial 

valuation, which can be 
extended to the resolved 

variables in order to 
satisfy every clause.

So, once we have resolved all the 
X, ¬X pairs, we can focus on 
clauses not mentioning A.

Eventually we will either produce 
{}, or have a set of clauses with 
no complementary pairs.
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If we can satisfy all the Xs, then 
making A true will do the trick.

If we cannot satisfy Xi then we 
must be able to satisfy all the Ys, 
and so making A false will do the 
trick.
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Searching for satisfaction

Finding Obstacles
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focus on part of this tree.
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Premises

Conclusion

Any assignment of truth values that 
makes all the premises true 

will make the conclusion true.

The conclusion follows from the premises

A valid  
inference
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Any assignment of truth values that 
makes the conclusion false will make  
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For any valid  
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Premises

Conclusion

If some assignment  
XYZ of values for ABC  

makes the conclusion false  
then the assignments XYZD and XYZD̅   

each make one or other of the two premises false. 

A special property  
of this inference
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Idea! Use the problem to simplify the search
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