
Informatics 1
Computation and Logic

Sets of States: Venn Diagrams and Truth Tables

Michael Fourman
@mp4man

1

This course provides a first glimpse of the deep connections
between computation and logic. We will focus primarily on the
simplest non-trivial examples of logic and computation:
propositional logic and finite-state machines.
In this lecture we look at an example that introduces some ideas
that we will explore further in later lectures, and introduce some
notation which should become more familiar in due course.

properties & sets
boolean circuits
boolean formulæ
boolean functions

2

Properties and sets are the things we want to talk about.
Once we have chosen a language we consider two things that
have the same properties to be identical.

3

The possible states of the signal correspond to all possible
combinations of lights, even though only four of them should
occur in practice.
So there are 8 states.
Our simple language with three variable will allow us to describe
any set of states - all 256 of them

4

In general, we consider a system with some finite number, n, of
Boolean variables. Here we have three variables RAG reach
represented by a light.
The possible states of the system correspond to Boolean
valuations of the variables: these are assignments giving a Boolean
value for each variable.
Here each light may be on (true) or off (false); we have 8 possible
valuations. In general, there will be 2

n
 valuations.

Each of our Boolean variables corresponds to a property of states.

{x | R(x)}

5

This notation for set comprehension will be useful.
Here x ranges over states. R(x) is the property that the red light is
on.
Similarly we have properties G(x) and A(x).

{x | G(x)}

6

This notation for set comprehension will be useful.
Here x ranges over states. R(x) is the property that the red light is
on.
Similarly we have properties G(x) and A(x).

{x | A(x)}

7

This notation for set comprehension will be useful.
Here x ranges over states. R(x) is the property that the red light is
on.
Similarly we have properties G(x) and A(x).

8

Venn (1834–1923)

We can place the states in a Venn Diagram.
This includes all eight possible combinations of values for the three
Boolean state variables.
For n larger than 3, the Venn diagram needs more dimensions than
most of us can easily visualise.
However, the notation of set comprehension can be used for any
number of dimensions.

{x | G(x)�R(x)}

9

xor

We can compute the set of states corresponding to any expression

??
10

�
x | G(x)� (R(x)�A(x))

 xor

To try in class

✔ ✔ ✔ ✔𐄂 𐄂𐄂𐄂

11

�
x | G(x)� (R(x)�A(x))

 xor

We find that the solution is symmetric, so xor is associative.

{x | G(x)�R(x)�A(x)}
✔ ✔ ✔ ✔𐄂 𐄂𐄂𐄂

12

xor

We find that the solution is symmetric, so xor is associative.

{x | G(x) $ R(x)}
✔✔ ✔ ✔𐄂 𐄂 𐄂𐄂

13

iff

??
14

iff�
x | G(x) $ (R(x) $ A(x))

To do in class

{x | G(x) $ R(x) $ A(x)}
✔ ✔ ✔ ✔𐄂 𐄂𐄂𐄂

15

iff

G(x) $R(x) $ A(x)

⌘
G(x)�R(x)�A(x)

To determine whether to expressions are equivalent, we can check
whether they give the same values for all 2^n states of the system
Venn diagram is just a presentation of truth table for two or three
variables.

OR

XOR

AND

NOT

16

The computation of the next state can be implemented by some
basic logic gates. These are circuits that take signals representing
binary values as inputs (on the left of each gate in our diagram)
and produce a signal representing the output value specified by
the relevant truth table.
The symbols are idealisations the actual circuits may have other
connections, for example, to provide power.

]
A

B

C

(A ⋁ ¬B) ⋀ (¬B ⨁ C)

]
A

B

CB

let bbar = not B  
 in (A || bbar) && (bbar ⨁ C)

(A || not B) && (not B ⨁ C)

Exercise: define ⨁ in Haskell

The computation of the next state can be implemented by some
basic logic gates. These are circuits that take signals representing
binary values as inputs (on the left of each gate in our diagram)
and produce a signal representing the output value specified by
the relevant truth table.
The symbols are idealisations the actual circuits may have other
connections, for example, to provide power.
The sharing, or reuse, of a computed value corresponds to the let …
in … pattern in Haskell.
Write a Haskell function to print out the truth table for a boolean
function.

]
A

B

C

(A ⋁ ¬B) ⋀ (¬B ⨁ C)

A B B C

¬ ¬

⋁ ⨁

⋀

Circuit Formula

Syntax tree

ABC A⋁¬B ¬B⨁C out
000 1 1 1
001 1 0 0
010 0 0 0
011 0 1 0
100 1 1 1
101 1 0 0
110 1 0 0
111 1 1 1

Function

A B C

¬

⋁ ⨁

⋀

DAG

Two Boolean circuits or formulæ are equivalent if they compute
the same Boolean function. That is, they have the same truth table,
or equivalently, they are represented by the same set of valuations.
A circuit can express the re-use of a subcomputation, in a way that
an expression cannot.
A formula is represented abstractly by a syntax tree. A circuit can
be represented abstractly by a Directed Acyclic Graph (DAG)

??
19

Find a proposition

Basic Boolean operations

1,> true, top

_ disjunction, or

^ conjunction, and

¬ negation, not

0,? false, bottom

20

Boole (1815 – 1864)

The algebra of sets
P(S) = {X | X ✓ S}

21

X _ Y = X [Y union

X ^ Y = X \ Y intersection

¬X = S \X complement

0 = ; empty set

1 = S entire set

