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This course provides a first glimpse of the deep connections 
between computation and logic. We will focus primarily on the 
simplest non-trivial examples of logic and computation: 
propositional logic and finite-state machines. 
In this lecture we look at an example that introduces some ideas 
that we will explore further in later lectures, and introduce some 
notation which should become more familiar in due course.



properties & sets 
boolean circuits 
boolean formulæ 
boolean functions
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Properties and sets are the things we want to talk about. 
Once we have chosen a language we consider two things that 
have the same properties to be identical.
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The possible states of the signal correspond to all possible 
combinations of lights, even though only four of them should 
occur in practice. 
So there are 8 states. 
Our simple language with three variable will allow us to describe 
any set of states - all 256 of them
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In general, we consider a system with some finite number, n, of 
Boolean variables. Here we have three variables RAG reach 
represented by a light. 
The possible states of the system correspond to Boolean 
valuations of the variables: these are assignments giving a Boolean 
value for each variable. 
Here each light may be on (true) or off (false); we have 8 possible 
valuations. In general, there will be 2

n
 valuations. 

Each of our Boolean variables corresponds to a property of states.



{x | R(x)}
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This notation for set comprehension will be useful. 
Here x ranges over states. R(x) is the property that the red light is 
on. 
Similarly we have properties G(x) and A(x).



{x | G(x)}

6

This notation for set comprehension will be useful. 
Here x ranges over states. R(x) is the property that the red light is 
on. 
Similarly we have properties G(x) and A(x).



{x | A(x)}
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This notation for set comprehension will be useful. 
Here x ranges over states. R(x) is the property that the red light is 
on. 
Similarly we have properties G(x) and A(x).
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Venn (1834–1923)

We can place the states in a Venn Diagram. 
This includes all eight possible combinations of values for the three 
Boolean state variables. 
For n larger than 3, the Venn diagram needs more dimensions than 
most of us can easily visualise. 
However, the notation of set comprehension can be used for any 
number of dimensions.



{x | G(x)�R(x)}
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xor

We can compute the set of states corresponding to any expression



??
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�
x | G(x)� (R(x)�A(x))

 xor

To try in class



✔ ✔ ✔ ✔𐄂 𐄂𐄂𐄂
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�
x | G(x)� (R(x)�A(x))

 xor

We find that the solution is symmetric, so xor is associative.



{x | G(x)�R(x)�A(x)}
✔ ✔ ✔ ✔𐄂 𐄂𐄂𐄂
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xor

We find that the solution is symmetric, so xor is associative. 



{x | G(x) $ R(x)}
✔✔ ✔ ✔𐄂 𐄂 𐄂𐄂
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iff



??
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iff�
x | G(x) $ (R(x) $ A(x))

 

To do in class



{x | G(x) $ R(x) $ A(x)}
✔ ✔ ✔ ✔𐄂 𐄂𐄂𐄂
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iff

G(x) $R(x) $ A(x)

⌘
G(x)�R(x)�A(x)

To determine whether to expressions are equivalent, we can check 
whether they give the same values for all 2^n states of the system 
Venn diagram is just a presentation of truth table for two or three 
variables.



OR

XOR

AND

NOT
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The computation of the next state can be implemented by some 
basic logic gates. These are circuits that take signals representing 
binary values as inputs (on the left of each gate in our diagram) 
and produce a signal representing the output value specified by 
the relevant truth table. 
The symbols are idealisations  the actual circuits may have other 
connections, for example, to provide power.  



]
A

B

C

(A ⋁ ¬B) ⋀ (¬B ⨁ C) 

]
A

B

CB

let bbar = not B  
    in (A || bbar) && (bbar ⨁ C)

(A || not B) && (not B ⨁ C)

Exercise: define ⨁ in Haskell 

The computation of the next state can be implemented by some 
basic logic gates. These are circuits that take signals representing 
binary values as inputs (on the left of each gate in our diagram) 
and produce a signal representing the output value specified by 
the relevant truth table. 
The symbols are idealisations  the actual circuits may have other 
connections, for example, to provide power.  
The sharing, or reuse, of a computed value corresponds to the let … 
in … pattern in Haskell. 
Write a Haskell function to print out the truth table for a boolean 
function. 



]
A

B

C

(A ⋁ ¬B) ⋀ (¬B ⨁ C) 

A B B C

¬ ¬

⋁ ⨁

⋀

Circuit Formula

Syntax tree

ABC A⋁¬B ¬B⨁C out
000 1 1 1
001 1 0 0
010 0 0 0
011 0 1 0
100 1 1 1
101 1 0 0
110 1 0 0
111 1 1 1

Function

A B C

¬

⋁ ⨁

⋀

DAG

Two Boolean circuits or formulæ are equivalent if they compute 
the same Boolean function. That is, they have the same truth table, 
or equivalently, they are represented by the same set of valuations. 
A circuit can express the re-use of a subcomputation, in a way that 
an expression cannot. 
A formula is represented abstractly by a syntax tree. A circuit can 
be represented abstractly by a Directed Acyclic Graph (DAG) 



??
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Find a proposition



Basic Boolean operations

1,> true, top

_ disjunction, or

^ conjunction, and

¬ negation, not

0,? false, bottom
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Boole (1815 – 1864)



The algebra of sets
P(S) = {X | X ✓ S}
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X _ Y = X [ Y union

X ^ Y = X \ Y intersection

¬X = S \X complement

0 = ; empty set

1 = S entire set


