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This course provides a first 
glimpse of the deep 
connections between 
computation and logic. We 
will focus primarily on the 
simplest non-trivial examples 
of logic and computation: 
propositional logic and finite-
state machines. 
In this lecture we look at an 
example that introduces some 
ideas that we will explore 
further in later lectures, and 
introduce some notation 
which should become more 

properties & sets 
boolean circuits 
boolean formulæ 
boolean functions
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Properties and sets are the 
things we want to talk about. 
Once we have chosen a 
language we consider two 
things that have the same 
properties to be identical.
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The possible states of the 
signal correspond to all 
possible combinations of 
lights, even though only four 
of them should occur in 
practice. 
So there are 8 states. 
Our simple language with 
three variable will allow us to 
describe any set of states - all 
256 of them
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In general, we consider a 
system with some finite 
number, n, of Boolean 
variables. Here we have three 
variables RAG reach 
represented by a light. 
The possible states of the 
system correspond to Boolean 
valuations of the variables: 
these are assignments giving a 
Boolean value for each 
variable. 
Here each light may be on 
(true) or off (false); we have 8 
possible valuations. In 



{x | R(x)}
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This notation for set 

comprehension will be useful. 
Here x ranges over states. R(x) 
is the property that the red 
light is on. 
Similarly we have properties 
G(x) and A(x).

{x | G(x)}
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This notation for set 

comprehension will be useful. 
Here x ranges over states. R(x) 
is the property that the red 
light is on. 
Similarly we have properties 
G(x) and A(x).



{x | A(x)}
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This notation for set 

comprehension will be useful. 
Here x ranges over states. R(x) 
is the property that the red 
light is on. 
Similarly we have properties 
G(x) and A(x).
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Venn (1834–1923)

We can place the states in a 
Venn Diagram. 
This includes all eight possible 
combinations of values for the 
three Boolean state variables. 
For n larger than 3, the Venn 
diagram needs more 
dimensions than most of us 
can easily visualise. 
However, the notation of set 
comprehension can be used 
for any number of dimensions.



{x | G(x)�R(x)}
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xor We can compute the set of 
states corresponding to any 
expression

??
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�
x | G(x)� (R(x)�A(x))

 xor To try in class



✔ ✔ ✔ ✔𐄂 𐄂𐄂𐄂
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�
x | G(x)� (R(x)�A(x))

 xor We find that the solution is 
symmetric, so xor is 
associative.

{x | G(x)�R(x)�A(x)}
✔ ✔ ✔ ✔𐄂 𐄂𐄂𐄂
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xor We find that the solution is 
symmetric, so xor is 
associative. 



{x | G(x) $ R(x)}
✔✔ ✔ ✔𐄂 𐄂 𐄂𐄂
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iff

??
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iff�
x | G(x) $ (R(x) $ A(x))

 
To do in class



{x | G(x) $ R(x) $ A(x)}
✔ ✔ ✔ ✔𐄂 𐄂𐄂𐄂
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iff

G(x) $R(x) $ A(x)

⌘
G(x)�R(x)�A(x)

To determine whether to 
expressions are equivalent, we 
can check whether they give 
the same values for all 2^n 
states of the system 
Venn diagram is just a 
presentation of truth table for 
two or three variables.

OR

XOR

AND

NOT
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The computation of the next 
state can be implemented by 
some basic logic gates. These 
are circuits that take signals 
representing binary values as 
inputs (on the left of each 
gate in our diagram) and 
produce a signal representing 
the output value specified by 
the relevant truth table. 
The symbols are idealisations  
the actual circuits may have 
other connections, for example, 
to provide power.  



]
A

B

C

(A ⋁ ¬B) ⋀ (¬B ⨁ C) 

]
A

B

CB

let bbar = not B  
    in (A || bbar) && (bbar ⨁ C)

(A || not B) && (not B ⨁ C)

Exercise: define ⨁ in Haskell 

The computation of the next 
state can be implemented by 
some basic logic gates. These 
are circuits that take signals 
representing binary values as 
inputs (on the left of each 
gate in our diagram) and 
produce a signal representing 
the output value specified by 
the relevant truth table. 
The symbols are idealisations  
the actual circuits may have 
other connections, for example, 
to provide power.  
The sharing, or reuse, of a 

]
A

B

C

(A ⋁ ¬B) ⋀ (¬B ⨁ C) 

A B B C

¬ ¬

⋁ ⨁

⋀

Circuit Formula

Syntax tree

ABC A⋁¬B ¬B⨁C out
000 1 1 1
001 1 0 0
010 0 0 0
011 0 1 0
100 1 1 1
101 1 0 0
110 1 0 0
111 1 1 1

Function

A B C

¬

⋁ ⨁

⋀

DAG

Two Boolean circuits or 
formulæ are equivalent if they 
compute the same Boolean 
function. That is, they have 
the same truth table, or 
equivalently, they are 
represented by the same set 
of valuations. 
A circuit can express the re-
use of a subcomputation, in a 
way that an expression 
cannot. 
A formula is represented 
abstractly by a syntax tree. A 
circuit can be represented 



??
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Find a proposition

Basic Boolean operations

1,> true, top

_ disjunction, or

^ conjunction, and

¬ negation, not

0,? false, bottom
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Boole (1815 – 1864)



The algebra of sets
P(S) = {X | X ✓ S}
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X _ Y = X [ Y union

X ^ Y = X \ Y intersection

¬X = S \X complement

0 = ; empty set

1 = S entire set


