
Informatics 1
Computation and Logic

Sets of States: Venn Diagrams and Truth Tables

Michael Fourman
@mp4man

1

This course provides a first
glimpse of the deep
connections between
computation and logic. We
will focus primarily on the
simplest non-trivial examples
of logic and computation:
propositional logic and finite-
state machines.
In this lecture we look at an
example that introduces some
ideas that we will explore
further in later lectures, and
introduce some notation
which should become more

properties & sets
boolean circuits
boolean formulæ
boolean functions

2

Properties and sets are the
things we want to talk about.
Once we have chosen a
language we consider two
things that have the same
properties to be identical.

3

The possible states of the
signal correspond to all
possible combinations of
lights, even though only four
of them should occur in
practice.
So there are 8 states.
Our simple language with
three variable will allow us to
describe any set of states - all
256 of them

4

In general, we consider a
system with some finite
number, n, of Boolean
variables. Here we have three
variables RAG reach
represented by a light.
The possible states of the
system correspond to Boolean
valuations of the variables:
these are assignments giving a
Boolean value for each
variable.
Here each light may be on
(true) or off (false); we have 8
possible valuations. In

{x | R(x)}

5

This notation for set

comprehension will be useful.
Here x ranges over states. R(x)
is the property that the red
light is on.
Similarly we have properties
G(x) and A(x).

{x | G(x)}

6

This notation for set

comprehension will be useful.
Here x ranges over states. R(x)
is the property that the red
light is on.
Similarly we have properties
G(x) and A(x).

{x | A(x)}

7

This notation for set

comprehension will be useful.
Here x ranges over states. R(x)
is the property that the red
light is on.
Similarly we have properties
G(x) and A(x).

8

Venn (1834–1923)

We can place the states in a
Venn Diagram.
This includes all eight possible
combinations of values for the
three Boolean state variables.
For n larger than 3, the Venn
diagram needs more
dimensions than most of us
can easily visualise.
However, the notation of set
comprehension can be used
for any number of dimensions.

{x | G(x)�R(x)}

9

xor We can compute the set of
states corresponding to any
expression

??
10

�
x | G(x)� (R(x)�A(x))

 xor To try in class

✔ ✔ ✔ ✔𐄂 𐄂𐄂𐄂

11

�
x | G(x)� (R(x)�A(x))

 xor We find that the solution is
symmetric, so xor is
associative.

{x | G(x)�R(x)�A(x)}
✔ ✔ ✔ ✔𐄂 𐄂𐄂𐄂

12

xor We find that the solution is
symmetric, so xor is
associative.

{x | G(x) $ R(x)}
✔✔ ✔ ✔𐄂 𐄂 𐄂𐄂

13

iff

??
14

iff�
x | G(x) $ (R(x) $ A(x))

To do in class

{x | G(x) $ R(x) $ A(x)}
✔ ✔ ✔ ✔𐄂 𐄂𐄂𐄂

15

iff

G(x) $R(x) $ A(x)

⌘
G(x)�R(x)�A(x)

To determine whether to
expressions are equivalent, we
can check whether they give
the same values for all 2^n
states of the system
Venn diagram is just a
presentation of truth table for
two or three variables.

OR

XOR

AND

NOT

16

The computation of the next
state can be implemented by
some basic logic gates. These
are circuits that take signals
representing binary values as
inputs (on the left of each
gate in our diagram) and
produce a signal representing
the output value specified by
the relevant truth table.
The symbols are idealisations
the actual circuits may have
other connections, for example,
to provide power.

]
A

B

C

(A ⋁ ¬B) ⋀ (¬B ⨁ C)

]
A

B

CB

let bbar = not B  
 in (A || bbar) && (bbar ⨁ C)

(A || not B) && (not B ⨁ C)

Exercise: define ⨁ in Haskell

The computation of the next
state can be implemented by
some basic logic gates. These
are circuits that take signals
representing binary values as
inputs (on the left of each
gate in our diagram) and
produce a signal representing
the output value specified by
the relevant truth table.
The symbols are idealisations
the actual circuits may have
other connections, for example,
to provide power.
The sharing, or reuse, of a

]
A

B

C

(A ⋁ ¬B) ⋀ (¬B ⨁ C)

A B B C

¬ ¬

⋁ ⨁

⋀

Circuit Formula

Syntax tree

ABC A⋁¬B ¬B⨁C out
000 1 1 1
001 1 0 0
010 0 0 0
011 0 1 0
100 1 1 1
101 1 0 0
110 1 0 0
111 1 1 1

Function

A B C

¬

⋁ ⨁

⋀

DAG

Two Boolean circuits or
formulæ are equivalent if they
compute the same Boolean
function. That is, they have
the same truth table, or
equivalently, they are
represented by the same set
of valuations.
A circuit can express the re-
use of a subcomputation, in a
way that an expression
cannot.
A formula is represented
abstractly by a syntax tree. A
circuit can be represented

??
19

Find a proposition

Basic Boolean operations

1,> true, top

_ disjunction, or

^ conjunction, and

¬ negation, not

0,? false, bottom

20

Boole (1815 – 1864)

The algebra of sets
P(S) = {X | X ✓ S}

21

X _ Y = X [Y union

X ^ Y = X \ Y intersection

¬X = S \X complement

0 = ; empty set

1 = S entire set

