
Informatics 1: Computation and Logic by Michael Paul Fourman is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons License

Informatics 1
Computation and Logic

Lecture 19
Logic: The Big Ideas

A formal language, without the vagueness
and ambiguity of natural language

Syntax:
expressions are built up from atomic
propositions using logical connectives

 ∧∨¬→
expressions are trees, with atomic

propositions as leaf nodes and other nodes
labelled with connectives

→

A

¬∧

B

A ∧ B → ¬C
C

precedence
¬
∧
∨
→
⬌

A formal language, without the vagueness
and ambiguity of natural language

Semantics:
the truth value expressions is built up
“compositionally” from the truth values of its
atomic propositions using logical operators

→

A

¬∧

B

A ∧ B → ¬C
C

∧ →A ¬A

A ∧ B → ¬C
A ∧ B → ¬C

a deduction
rule

Formal Inference

proofs are built from assumptions using sound rules
proofs are trees, with assumptions as leaves, and
other nodes labelled with instances of rules

A→B ¬B
¬A

an entailment
A→B, ¬B ⊢ ¬A

cut rule
a rule for composing proofs

A→B, B→C, ¬C ⊢ ¬A

a proof

Formal Inference

proofs are built from assumptions using sound rules
proofs are trees, with assumptions as leaves, and
other nodes labelled with instances of rules

A→B ¬B
¬A

A→B, ¬B ⊢ ¬A
B→C ¬C

B→C, ¬C ⊢ ¬B

?
(A→B)→(A→C) ⊢ A → (B→C)

A→B, ¬B ⊢ ¬A B→C, ¬C ⊢ ¬B

A→B, B→C, ¬C ⊢ ¬A

A→B, B→C ⊢ ¬C → ¬A

a proof

Natural Deduction
one natural way to prove A→B is to assume A and prove B

A→B ¬B
¬A

B→C ¬C

a proof?

A→B ¬B
¬C →¬A

B→C ¬C

→ introduction
a rule of inference

Γ, X ⊢ Y
Γ ⊢ X→Y

Natural Deduction
one natural way to prove X→Y is to assume X and prove Y
and if we can prove X→Y then from X we can infer Y

A,B ⊢ B (A→B)→(A→C) ⊢ (A→B)→(A→C) .
B ⊢ A→B A→B, (A→B)→(A→C) ⊢ A→C A→C ⊢ A→C

B, (A→B)→(A→C) ⊢ A→C A→C, A ⊢C
(A→B)→(A→C), A, B ⊢ C
(A→B)→(A→C), A ⊢ B→C

(A→B)→(A→C) ⊢ A → (B→C)

→ introduction & elimination
a 2-way rule of inference

Γ, X ⊢ Y
Γ ⊢ X→Y

The proofs may be natural, but sometimes they are hard to find!

Gentzen’s idea
Instead of just entailments, Γ ⊢ X
(where X is an expression and Γ is a finite set of expressions)

allow sequents, Γ ⊢ Δ
(where both Γ and Δ are finite sets of expressions)

Of course, every entailment ‘is’ a sequent
(where Δ is a singleton)

but the sequent calculus is much
simpler than natural deduction

�, A ` �, A
(I)

�, A,B ` �

�, A ^B ` �
(^L) � ` A,B,�

� ` A _B,�
(_R)

�, A ` � �, B ` �

�, A _B ` �
(_L) � ` A,� � ` B,�

� ` A ^B,�
(^R)

� ` A,� �, B ` �

�, A ! B ` �
(! L)

�, A ` B,�

� ` A ! B,�
(! R)

� ` A,�

�,¬A ` �
(¬L) �, A ` �

� ` ¬A,�
(¬R)

The diagram shows a river, a road, an
island, and two bridges that can open to
let ships pass.
Ships can pass from West to East only if at
least one of the bridges is open.
Cars can pass from North to South only if
both bridges are closed.

N

S

W E

How does this relate to
de Morgan’s Law?

A

B

Draw a graph showing
the paths across the
bridges from
North to South.

N

S

In each case, the bridges
correspond to edges of

the graph.

Draw a graph showing
the paths under the
bridges from West to

East.

What is the logical
relationship between the

two graphs?

E
W

A B

C D
F

G

H

J

K
L

We can express many combinatorial problems in propositional
logic

(eg Sudoku, but also more practical problems, such as circuit design)

We can use resolution to check whether a set of clauses is
consistent.

If we can derive the empty clause the set is inconsistent, and
we can invert the proof to produce a refutation tree

If we cannot derive the empty clause we can construct a
satisfying valuation from the failed attempt to prove a

contradiction
Generating all the resolvants takes space and time

We can express many combinatorial problems in propositional
logic

(eg Sudoku, but also more practical problems)

We can search for solutions to a set of constraints expressed in
propositional logic

We convert the problem to clausal form
and check partial valuations V against our constraints

if V contradicts any clauses our search must backtrack.
Checking these potential solutions costs time and space

We can narrow the search by unit propagation:
identifying literals whose siblings are all falsified,

and making them true
Keeping track of unit literals takes time

The search for solutions to a set of constraints

We convert the problem to clausal form
and check partial valuations V against our constraints

if V contradicts any clauses our search must backtrack.
Checking these potential solutions costs time and space

We speed up the search by watching one or two literals in
each clause and checking whether we can maintain an

invariant

for each clause,
if any watched literal is false then some watched literal is true

if we cannot maintain the invariant we must backtrack

if we watch two literals, then unit propagation is included in the
procedure we use to maintain the invariant

