In this lecture we consider the problem of searching for a
satisfying valuation for a set of clauses.

We look at three algorithms.







V is a partial valuation

N alllve searc h (a consistent set of literals)
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chooselLiteral(®,V) returns a literal occurring in @ | V




partial valuations

A partial valuation makes each
atom true, false, or unassigned.
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watching one variable

to make a clause true
we only need to make one of its literals true

if a valuation makes every literal false
then it cannot
be extended to a satisfying valuation




watching one literal

to make a clause true \

we can make any one of its literals true

to make it false we must make -~
-

——
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every last one false

IDEA we watch one literal in each clause, ~N
as we search for a satisfying valuation,
we change the literal we are watching so that

(€

the valuation of each watched literal is
either undefined or true

if we reach a stage where all watched literals are true
we have a satisfying valuation




Invariant
Every watched literal is either unassigned, or true.

If we set W true the invariant still holds
If we want to set W false,

if all other literals in our clause are false,
then this clause contradicts the valuation;
we return false, and the invariant holds

if the value of some literal W’ is undefined,
then we can make W false and watch W’ instead
the invariant holds
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The invariant is that every
watched literal is either true or
unassigned

If we want to set a watched literal
false we first have to check that
we can move the pointers so we
can still satisfy the invariant
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If we want to set A true we will
have to move two pointers
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If we want to set B true there is
one pointer to move
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To make C true we would have to

move two pointers
— but for one of them there is

nowhere left to go!
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To make C true we would have to
move two pointers

— but for one of them there is
nowhere left to go!

This branch of the search has

failed, so we must backtrack and
search elsewhere.

Note that it doesn’t matter
whether or not we move the first
pointer, so long as the invariant
still holds. In this case, we have
moved it.
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Note that it doesn’t matter
whether or not we move the first
pointer, so long as the invariant
still holds. In this case, we have
moved it.

Now we try making C false. The
invariant still holds - we don’t
need to move any pointers.
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Note that it doesn’t matter
whether or not we move the first
pointer, so long as the invariant
still holds. In this case, we have
moved it.

We can see that every clause is
satisfied, because every watched
literal is true.

You should check that, if we had
been watching D instead of B in
the second clause, we still have
found a satisfying valuation at the
next step.



Boolean Constraint Propagation
BCP

if @ |V contains a unit clause {X}
—that is, a clause with only one literal —
add that literal to V and simplify
d|VAX

if ®|V A Xisinconsistent, sowas ® | V
every satisfying valuation for ® extending V
must make X true




watching two Iiter\als'

-~
to make a clause true

we can make any one of its literals true

to make it false we must make
every last one false

when we have made the last-but-one false
we have a unit clause

IDEA we watch two literals in each clause
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“BCP of the present invention identifies implied
clauses and the associated implications while maintaining
certain invariants, namely that each clause has two watched
literals and that if a clause can become newly implied via
any sequence of assignments, then the sequence will include

an assignment of one of the watched literals to Zero.”




invariant

Every watched literal is either unassigned, or true. 1

At most one watched literal is false, and if one is
false then the other is true.

2

The first invariant implies the second, so we can
normally move pointers to maintain the first invariant,
just as before.

If we want to make one of the watched literals false,

and we have no room to move so that 1 holds,

then we must make the other literal true, so that 2 holds,
or this branch of the search fails.
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The invariant is that every
watched literal is either true or
unassigned

If we want to set a watched literal
false we first have to check that
we can move the pointers so we
can still satisfy the invariant
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If we want to set A true we will
have to move two pointers
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This is easily done
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If we want to set B true there is
one pointer to move, but there is
nowhere to go.
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If we want to set B true there is
one pointer to move, but there is
nowhere to go.

If we make B true we must make
C false — so we try this.

If making C false fails then
making B true fails;

we would then backtrack to
make them both unassigned, and
maintain our invariant.

In this case we can already see
that all clauses are satisfied as at
least one of the watched literals
in each clause is true.
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For next week’s tutorial, you
will try both watched literal

methods for this example.



