In this lecture we consider the problem of searching for a
satisfying valuation for a set of clauses.

We look at three algorithms.







V is a partial valuation

N alllve searc h (a consistent set of literals)

VAA = Vu{A}
function SAT(®,V)
DN = {} @ is a set of clauses
l
{} OV ® | Vis the result of

&&

let A = chooselLiteral (®,V)
in

simplifying ® using V:
For each literal L e V

SAT (®,V A A) * remove clauses
I ' containing L
SAT (®,V A =A) * delete L from

remaining clauses

chooselLiteral(®,V) returns a literal occurring in @ | V




partial valuations

A partial valuation makes each
atom true, false, or unassigned.



OV

(©)




OV

(©)




oIV Vima

search




= oV Vo

BENE e searc




= oIV Vima

BENE e searc




= oV Vo

BENE e searc




= oV Vo

BENE e searc




= oV Vo

BENE e searc




= oV Vo

BENE e searc




watching one variable

to make a clause true
we only need to make one of its literals true

if a valuation makes every literal false
then it cannot
be extended to a satisfying valuation




watching one literal

to make a clause true \

we can make any one of its literals true

to make it false we must make -~
-

——

V4

every last one false

IDEA we watch one literal in each clause, ~N
as we search for a satisfying valuation,
we change the literal we are watching so that

(€

the valuation of each watched literal is
either undefined or true

if we reach a stage where all watched literals are true
we have a satisfying valuation




Invariant
Every watched literal is either unassigned, or true.

If we set W true the invariant still holds
If we want to set W false,

if all other literals in our clause are false,
then this clause contradicts the valuation;
we return false, and the invariant holds

if the value of some literal W’ is undefined,
then we can make W false and watch W’ instead
the invariant holds




clauses

¥

A B C

¥

-C B D

¥

-A B C

¥

-A -B -C

search

The invariant is that every
watched literal is either true or
unassigned

If we want to set a watched literal
false we first have to check that
we can move the pointers so we
can still satisfy the invariant



clauses

Irrr

V :[1nA?

search

<

If we want to set A true we will
have to move two pointers



clauses V- A This is easily done

search

FHET

<
_




clauses

HHIT

V 1 [A1~B?

search

AB

If we want to set B true there is
one pointer to move



clauses

LT

—

search




clauses

LT

\ : [AB]AC?

search

AB

To make C true we would have to

move two pointers
— but for one of them there is

nowhere left to go!



clauses

!

™
(@)

o -

O

I [
o =
O o

V: [AB]

search

e

7_/

F

To make C true we would have to
move two pointers

— but for one of them there is
nowhere left to go!

This branch of the search has

failed, so we must backtrack and
search elsewhere.

Note that it doesn’t matter
whether or not we move the first
pointer, so long as the invariant
still holds. In this case, we have
moved it.



clauses

LT

NV

[A,B]A-C?

search

Note that it doesn’t matter
whether or not we move the first
pointer, so long as the invariant
still holds. In this case, we have
moved it.

Now we try making C false. The
invariant still holds - we don’t
need to move any pointers.



clauses

LT

NV

[A,B,-C]

search

Note that it doesn’t matter
whether or not we move the first
pointer, so long as the invariant
still holds. In this case, we have
moved it.

We can see that every clause is
satisfied, because every watched
literal is true.

You should check that, if we had
been watching D instead of B in
the second clause, we still have
found a satisfying valuation at the
next step.



Boolean Constraint Propagation
BCP

if @ |V contains a unit clause {X}
—that is, a clause with only one literal —
add that literal to V and simplify
d|VAX

if ®|V A Xisinconsistent, sowas ® | V
every satisfying valuation for ® extending V
must make X true




watching two Iiter\als'

-~
to make a clause true

we can make any one of its literals true

to make it false we must make
every last one false

when we have made the last-but-one false
we have a unit clause

IDEA we watch two literals in each clause

https://docs.google.com/viewer?
url=patentimages.storage.googleapis.com/pdfs/US20030084411.pdf




9)

United States

US 20030084411A1

a2 Patent Application Publication (o) Pub. No.: US 2003/0084411 A1

Moskewicz et al. (43) Pub. Date: May 1, 2003
(54) METHOD AND § 1 FOR EFFICIE (52) US. €l s 716/3
IMPLEMENTATION OF BOOLEAN
SATISFIABILITY
(76) Inventors: Matthew Moskewicz, Berkeley, CA 57 ABSTRACT
(US); Conor Madigan, Boston, MA
(US); Sharad Malik, Princeton, NJ
us) Disclosed is a complete SAT solver, Chafl, which is onc (o
Correspondence Address: two orders of magnitude faster than existing lvers,
WOODCOCK WASHBURN LLP Using the Davis-Putnam (DP) ba search strategy,
ONE LIBERTY PLACE, 46TH FLOOR Chaff employs efficient Boolean Constraint Propagation
1650 MARKET STREET (BCP), termed two literal watching, and a low overhead
PHILADELPHIA, PA 19103 (US) decision making strategy, termed Variable State Independent
) Decaying Sum (VSIDS). During BCP, Chaff watches two
(21)  Appl. No. 10/238,125 literals not assigned to zero. The literals can be specifically
(22) Filed Sep. 9, 2002 ordered o randomly sclected. VSIDS ranks variables, the
highest-ranking literal having the highest counter value,
Related U.S. Application Data where counter value is incremented by one for each oc
" ) P ) rence of a literal in a clause. Periodically, the counters are
(60). Provisional application No. GO318,110,filed 00 SEp. giyided by a consant to favor lerals included in recently
7, 2001 created conflict clauscs. VSIDS can also be used to select
Publication Classification watched litcrals, the literal least likely to be set (i.c., lowest
VSIDS rank, or lowest VSIDS rank combined with last
(1) Int.CL7 .. - GOGF 17/50  decision level) being sclected to watch.




(60) Provisional application No. 60/318,110, filed on Sep.
7,2001. N
created conflict clauses

(51) Int.CL7 GOGF 17/50 decision level) being selected to watch.

Conflid, Bckirack.
Vis=X Vi=X VX VisX

Literdl with value 1

divided by a constant to favor literals included in recently
VSIDS can also be used to select
Publication Classification watched literals, the literal least likely to be se
VSIDS rank, or lowest VSIDS rank combined with last

Vis=0
Vil
V=0

0




“BCP of the present invention identifies implied
clauses and the associated implications while maintaining
certain invariants, namely that each clause has two watched
literals and that if a clause can become newly implied via
any sequence of assignments, then the sequence will include

an assignment of one of the watched literals to Zero.”




invariant

Every watched literal is either unassigned, or true. 1

At most one watched literal is false, and if one is
false then the other is true.

2

The first invariant implies the second, so we can
normally move pointers to maintain the first invariant,
just as before.

If we want to make one of the watched literals false,

and we have no room to move so that 1 holds,

then we must make the other literal true, so that 2 holds,
or this branch of the search fails.




clauses

A/

A B C

A

-C B D

vy

-A B C

A/

-A -B -C

search

The invariant is that every
watched literal is either true or
unassigned

If we want to set a watched literal
false we first have to check that
we can move the pointers so we
can still satisfy the invariant



clauses

Vo [ra?

search

<

If we want to set A true we will
have to move two pointers



clauses

VA

(Al

search

JD

This is easily done



clauses

EEFF

V :[A17B?

search

AB

35

If we want to set B true there is
one pointer to move, but there is
nowhere to go.



clauses

¥
m

vy

-C B D

w i
J

V : [AB,-C]

search

o«
«
@R
<

36

If we want to set B true there is
one pointer to move, but there is
nowhere to go.

If we make B true we must make
C false — so we try this.

If making C false fails then
making B true fails;

we would then backtrack to
make them both unassigned, and
maintain our invariant.

In this case we can already see
that all clauses are satisfied as at
least one of the watched literals
in each clause is true.



ABC

ABCD ABCD

I—-Bv—|Cv—|D| IﬂBvDI

ﬂAvC

ABCD

ﬂEv

ﬂAv

ABCDE
ABCDE ABCDE

AXXX

EVB

ﬂEvB

37

For next week’s tutorial, you
will try both watched literal

methods for this example.



