
Notes on Finite Automata

Turing machines are widely considered to be the abstract proptotype
of digital computers; workers in the field, however, have felt more and
more that the notion of a Turing machine is too general to serve as an
accurate model of actual computers. It is well known that even for simple
calculations it is impossible to give an a priori upper bound on the
amount of tape a Turing machine will need for any given computation.
It is precisely this feature that renders Turing’s concept unrealistic.

In the last few years the idea of a finite automaton has appeared
in the literature. These are machines having only a finite number of
internal states that can be used for memory and computation. The
restriction of finiteness appears to give a better approximation to the
idea of a physical machine. Of course, such machines cannot do as
much as Turing machines, but the advantage of being able to compute
an arbitrary general recursive function is questionable, since very few
of these functions come up in practical applications.

From the Introduction to Finite Automata and their Decision

Problems, Rabin & Scott, IBM Journal, April 1959, pp114-25.S

0.1 The intuitive model and basic definitions

Again, we quote from Rabin and Scott:

An automaton will be considered as a black box of which questions
can be asked and from which a “yes” or “no” answer is obtained. The
number of questions that can be asked will be infinite, adn for simplicity
a question is interpreted as any arbitrary finite sequence of symbols
from a finite alphabet given in advance. ...

... we shall ... think of the question as given on one-dimensional
tapes. The machine will be endowed with a reading head which can
read one square of the tape (i.e. one symbol) at a time, and then it can
advance the tape one unit and read, say, the next square to the right.

1



Informatics 1 Computation and Logic

We assume the machine stops when it runs out of tape. So much for
the external character of an automaton.

The internal workings of an automaton will not be analyzed too
deeply. We are not concerned with how the machine is built but with
what it can do. The definition of the internal structure must be general
enough to cover all conceivable machines, but it need not involve itself
with problems of circuitry. The simple method of obtaining generality
without unnecessary detail is to use the concept of internal states. No
matter how many wiresor tubes or relays the machine contains, its
operation is determined by stable states of the machine at discrete
time intervals. An actual existing machine may have billions of such
internal states, but the number is not important from the theoretical
standpoint—only the fact that it is finite.

... if we make a table of all the transitions from a state and a symbol
to a new state, then the whole action of the machine is essentially
described.

Finally, to get an answer from the machine, ... we need only dis-
tinguish .. those states in which the “yes” light is on ... The whole
machine is described when a class of designated states corresponding
to the “yes” answers is given.

ibid., Chapter I. p115.

Here is Rabin and Scott’s formal definition of an automaton.1

Definition 1. A (finite) automaton over the alphabet ⌃ is a system

A = hQ,⌃, q0, A,Ni,

where Q is a finite non-empty set (the internal states of A), the alphabet ⌃ is a set
whose elements we call symbols, the next-state function N is a function defined on
the Cartesian product Q⇥ ⌃ of all pairs of states and symbols to give values in Q

(defining transitions or moves of A), the initial state q0 2 Q is an element of Q (of
A), and A ✓ Q is a subset of Q (the final, or accepting states of A).

This definition has stood the test of time.
For small automata, it is often helpful to draw a transition graph rather than

listing the various elements of the formal definition. Each state is represented by a
node in this graph, and there is an arrow—a transition—labelled a from state s

to state t i↵ t = M(s, a). We use circles to represent the nodes (states). We use

1The symbol A is a capital A in the Fraktur or Gothic typeface. Typesetting in Fraktur—
fractured, or broken type, known in German as Gebrochene Schrift—was common in German-
speaking countries until the mid 20th century. Individual Fraktur letters are often used in
mathematics: A,B,C,D,E,F,G,H, I, J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z.

c�Michael Fourman 2014,2015 2



Informatics 1 Computation and Logic

an arrow, which looks just like an unlabelled transition coming from nowhere, to
indicate the starting state, s0, and a double ring around each accepting state t 2 F .

To recap, states are nodes and transitions are labelled arrows in a directed graph.
The start state is indicated by an arrow, coming from nowhere. An accepting state
is indicated by a double border. Each transition is labelled with a symbol from the
alphabet.

Examples 2. We start with two complementary examples.

2.1: Here is an automaton (we call it even) that accepts binary numbers (strings
of zeros and ones) divisible by 2.

0 1Start

0 0 1

1

even

This machine is simple. Its alphabet is {0, 1}. The transitions labelled 0
end in state 0, and the transitions labelled 1 end in state 1. So this machine
starts in state 0, then moves from state-to-state, as required to ensure that
its state always corresponds to the last symbol read.

2.2: We can change the accepting state to create a machine (odd) that accepts
exactly the odd binary numbers.

0 1Start

0 0 1

1

odd

These examples are complementary in the sense that they give complementary
answers: one answers, “Yes”, when the other answers, “No”, and vice versa. We
can create a similar complement for any machine, simply by replacing F ✓ S by
its complement, F̄ = S \ F , in the definition.

Taking stock, we have seen that a finite automaton can recognise the di↵erence
between odd and even binary numbers—this is not surprising: we can even say it
would be odd if it could not!

c�Michael Fourman 2014,2015 3



Informatics 1 Computation and Logic

Examples 3. Moving from two to three gives three more interesting examples.

0 1

1

1

0 0
2

1

0

0 1

1

1

0 0
2

1

0

0 1

1

1

0 0
2

1

0

0 mod 3

1 mod 3

2 mod 3

These three machines share the same set of states, and the same transition function.
These keep track of the valuemod 3 , of the binary number they have seen. If we
write b for some sequence of binary digits, and JbK for the number it represents,
then

Jb 0K = 2⇥ JbK and Jb 1K = 2⇥ JbK + 1

For example, if b = 11 1 then, JbK = 7 , and we have,

J1 1 1 0K = 14 and J1 1 1 1K = 15

Now 7mod 3 = 1 so the two equations, 14mod 3 = 2 , and 15mod 3 = 0, correspond
to the two transitions from state 1, to state 2 and state 0 respectively. These values
correspond to the middle row of the full transition function igiven by the following
table:

JbKmod 3 Jb 0Kmod 3 Jb 1Kmod 3
0 0 1
1 2 0
2 1 2

where each entry in the JbKmod 3 column corresponds to a di↵erent current state,
and the two following columns give the next state determined by the input of a 0
or 1, respectively.

By a tape we shall understand any finite sequence of symbols from ⌃. A machine
processes an input tape by starting its start state, s0, then following a series of
transitions, from state-to-state, whose labels correspond to the sequence of symbols

c�Michael Fourman 2014,2015 4



Informatics 1 Computation and Logic

on the tape.2 The sequence of states visited by this process is called the trace of
the computation. For example, for both machines in Example 2 above, the trace
for an input x is just 0x.

The set of all tapes is denoted by ⌃⇤, the set of finite sequences of symbols,
which includes the empty tape with no symbols, denoted by ⇤. For each input
tape x = (x1, . . . , xn), where n is the length of x, the trace is a finite sequence of
states, that is, an element of S⇤.

Definition 4. For a machine M with alphabet ⌃, and a tape x = (x0, . . . , xn�1) 2
⌃⇤ the trace T(M,x) 2 S

⇤ is the sequence (s0, . . . , sn) of states where s0 is the
starting state of M and the remaining steps are defined by induction:

si+1 = M(si, xi)

We also extend the function M , defined on S ⇥ ⌃, to a function M defined on
S ⇥ ⌃⇤.

M(s,⇤) = s

To process ⇤ we do nothing.

M(s, x�) = M(M(s, x), �)

To process x� first process x then step to the state determined by �.

So, if the machine A = (S,M, s0, F ) processes a tape x starting from s0, it will
terminate in the state t = M(s0, x), and give the answer “yes” just in case t 2 F .

This is a natural definition. Every symbol can be viewed as a tape of length
1. The definition of the automaton determines the values of M(s, �), and this
definition extends the function so that M(s, xy) = M(M(s, x), y). To process xy
first process x and then process y.

In presenting examples, we may present M as a partial function: for some
state-symbol pairs we show no next state. We can view this, for the time being, as
short-hand for a machine with a distinguished sink state, or black hole from which
there is no escape. We don’t show the black hole state, and for any state-symbol
pair that is not shown the convention is that the next state is the black hole (which
is not an accepting state). once a trace falls into a black hole, it cannot escape.

2Once a symbol has been read, the tape moves on. In this model of computation there is no
going back to look at the same symbol twice.

c�Michael Fourman 2014,2015 5



Informatics 1 Computation and Logic

Theorem 5. No finite automaton can recognise the language

�
0n1n | n 2 N

 
,

that consists of strings that consist of some number of zeros follwed by the same

number of ones.

Proof. Let M be a DFA with k(> 0) states. Let n = 2⇥ k. Then any trace of the
states (x1, . . . , xn) visited for an input of n zeros in succession, must visit some
state more than once, say s = xp = xq, where p < q. Now consider the traces
for the following two input sequences: let ai be the trace of states visited for the
sequence of q zeros followed by q ones; let bj be the trace of states visited for the
sequence of p zeros followed by q ones. By construction aq = bp = s. Beyond this
state, both inputs continue with q ones, so, by induction on i, aq+i = bp+i for all
i  q. In particular, the two traces end in the same state, but one input has equal
numbers of ones and zeros, while the other does not.

c�Michael Fourman 2014,2015 6


	The intuitive model and basic definitions
	Non-determinism
	Glossary

