
Computation and Logic Definitions 
 

● True and False 
○ Also called Boolean ​truth values​, True and False represent the two 

values or states an atom can assume. 
We can use any two distinct objects to represent truth values,  
for example, 

True False 
    1     0 
    ⊤     ⊥ 

 
● Sets and Subsets 

○ A ​set​ S is a collection of elements. We write x ∈ S to mean that x is 
an element of S and y ∉ S to mean that y is not an element of S. 
For example the set 𝔹 of Boolean truth values { True, False } has 
two elements.  

True ∈ 𝔹 False  ∈ 𝔹 42 ∉ 𝔹 
  

○ A  is a ​subset ​ of B, in symbols, A ⊂ B,  
iff every element of A is an element of B, 
which means that, for all  x ∈ A. x ∈ B 

In this case we also say B is a superset of A, in symbols,  B ​ ​⊃⊃ ​A  
○ A ​is a ​proper subset ​ of B if A ⊂ B and A ≠ B, i.e. if there is some 

element of B that is not in A. 
 

● Atom  
○ These are the basic propositions (often represented by single 

letters) that can be in one of two states, true or false.  
They the variables in Boolean algebra, sometimes called  
propositional variables ​. 

 
● Expression/Well-Formed Formula/WFF  

○ Expressions are built from the atoms by applying the ​logical 
connectives​ (negation, conjunction, disjunction, implication, etc.) 

■ Every atom is a WFF 
■ If P and Q are WFFs so are 

P ∨ Q P ∧ Q 
P → Q ¬P 

We sometimes consider languages with more (e.g. ⊕, ↓, ↔),  
or fewer connectives. 

○ Expressions that are not atoms are called ​compound​ expressions. 
 

● Negation :  
○ When an expressions is negated using NOT ( ¬ ​ ) 

 



● Literal  
○ A literal is either an atom or its negation. 

If L is the literal ¬A then when talking about literals we may write  
¬L for the literal A.  (If K is the literal B then ¬K is the literal ¬B.) 

 
● Valuation 

○ A ​valuation​ is an assignment of truth values to a set of atoms. 
If a valuation is ​total​ if it assigns a value to every atom. 

○ Any total valuation V determines a value for each expression. The 
value of a compound expression is computed by applying the 
truth table corresponding to each logical connective occurring in 
the expression, to the values of its subexpressions. 
Using Haskell notation for the operations on Boolean values we 

 can express this as follows: 
 

 V(P ∨ Q) = V(P) || V(Q) 
 V(P ∧ Q) = V(P) && V(Q) 
V(P → Q) = if V(P) then V(Q) else True 
      V ​(​¬P) = not (V(P)) 

 
We often use valuations to represent the states of some system,  
and refer to the valuations that make an expression E true, as the 
set of states in which E is true. 

E is true in state V   iff V(E) = True 
 

● How do valuations relate to Venn diagrams? 
○ A Venn-Diagram represents the Boolean function corresponding 

to an expression. Each region (by which we mean, each area 
within the diagram bounded by arcs of the circles) of the Venn 
diagram corresponds to a valuation. The colored regions represent 
the valuations that make the expression true. 

○ Two expressions are equivalent iff have the same Venn diagram. 
This means that the same valuations 

○ In a three-circle Venn-Diagram we represent sets of states for a 
system with 8 states encoded by three state variables. Each region 
of the diagram represents one of the 8 states, and we colour the 
regions corresponding to the states in the set of interest. 

 
● Satisfiability  

○ An expression is ​satisfiable​ if and only if there exists some 
valuation of the atoms which makes the expression true. 

 
● Tautology  

○ An expression is tautologous if and only if it is true for all 
valuations of its atoms. 

 



● Contingent  
○ An expression is contingent if and only if it is satisfiable but not 

tautologous, that is, it is true for some valuations, but not all. 
 

● Consistency  
○ A set of expressions is ​consistent ​ if there is some valuation that 

makes every expression in the set true. 
○ A set of expressions is ​inconsistent ​ if no valuation makes every 

expression in the set true. 
 

● Boolean Algebra 
○ If E and F are Boolean expressions, we write E = F to mean that 

every valuation V gives the same value to E and F 
for all V. V(E) = V(F) 

○ Boolean Algebra is the study of such equations. For example,  
(A ⋀ B) ⋁ C = (A ⋀ C) ⋁ (B ⋀ C)   (distributivity) 
 

● Clausal Form 
○ In Boolean Algebra the operations of disjunction, ⋁, and 

conjunction, ⋀, are symmetric, associative, and idempotent. So 
any combination of disjunctions, ​or ​ any combination of  
disjunctions can be written without parentheses or repetition. 

We can write ​⩕​S and ​⩖​S for the conjunction/disjunction of a finite 

set of expressions, S.  
For V a valuation,  

 V(​⩕​S ) = ⊤   iff    for all e∈S. V(e) = ⊤ 

V( ​⩖​S ) = ⊤   iff    for some e∈S. V(e) = ⊤ 

These definitions tell us that we should interpret  

⩖​{} as ⊥      and    ​⩕​S as  ⊤ 

○ Furthermore, X ⋁ A ⋁ ¬A = X ⋁  ⊤ = ⊤ so any disjunctive 
combination of literals can be rewritten either as ⊤, or as the 
disjunction of a set of literals in which no atom occurs both 
positively and negatively. We call a set S of literals in which no 
atom occurs both positively and negatively a ​clause​, and interpret 

it as representing the disjunction ​⩖​S. When talking about clauses, 

we may write ⊥ for the empty clause 
○ A clausal form is a set C of clauses, interpreted as representing the 

conjunction ​⩕​C.  If the empty clause is in C , that is, ⊥ ∈ C, then 

V(C) = ⊥, for every valuation V. 
○ We can use Boolean algebra to convert any Boolean expression to 

an equivalent clausal form. This is called a ​conjunctive normal 
form ​ (CNF), because it expresses any boolean function as a 
conjunction of disjunctions of literals. 

 



● Resolution 
○ Resolution is an inference rule for clauses given by: 

X ⋁ A     Y ⋁ ¬A 
                                X ⋁ Y 

More formally, if we have two clauses 𝓧 and 𝓨 such that A ∈ 𝓧  
and ​¬A ​∈ 𝓨, then by resolution we can derive the clause  
(𝓧 ∪ 𝓨) ∖ { A, ​¬A }, whose elements are those literals occurring in 
𝓧 or 𝓨 (or both) that do not mention A. 
The key property of this rule is that it is sound: 

If V(𝓧) = ​⊤ and V( ​𝓨) = ​⊤ then ​V((𝓧 ∪ 𝓨) ∖ { A, ​¬A }) = ​ ​⊤ 
Or contrariwise, 

If V((𝓧 ∪ 𝓨) ∖ { A, ​¬A }) =​ ​⊥ then ​V(𝓧) = ​⊥ or V(​𝓨) = ​⊥ 
○ If we start from a clausal form C, and the resolution process 

produces the empty clause (which is not satisfied by any 
valuation), this shows us that the conjunction of the clauses 
excludes all valuations. Thus we can see that the clausal form has 
no satisfying valuations; it is contradictory. 

○ Thus, resolution provides a method for determining whether a 
given set of constraints, expressed in CNF, is consistent. 

 
● Contradiction  

○ Contradiction occurs when a set of clauses is inconsistent. It 
contains clauses that contradict each other (there is no valuation 
of atoms that makes all clauses true) 

Note that we can construct an inconsistent set of n clauses  
Such that any proper subset of these is consistent.  
(Hint: construct an inconsistent cycle of implications.) 

 
● DNF (Disjunctive Normal Form) : 

○ An expression is in DNF if it is a disjunction of conjunctions of 
literals. So {{A​∧​B}∨{C​∧​D}} is an example. 

 
● Sequent 

○ Premises |- Conclusions  , where the premises on the LHS and the 
conclusions on the RHS are both finite sets of expressions. 

○ An entailment is a sequent with exactly one conclusion 
 

● Counterexample  
○ A valuation is a counterexample to a sequent if it makes 

everything on the LHS (left-hand side) of the sequent true and 
everything to the RHS (right-hand side ) of the sequent false. 

○ An entailment is simply a sequent with exactly one expression on 
the RHS. A valuation is a counterexample to an entailment if it 
makes everything on the LHS (left-hand side) of the turnstile true 
and the expression on the RHS (right-hand side ) of the entailment 
false. 



 
● Valid and Invalid 

○ A sequent is valid if it has no counterexample. We can also express 
this positively, for both entailments and sequents 

■ An entailment is valid iff every valuation that makes all of 
the premises true also makes the conclusion true. 

■ A sequent is valid iff every valuation that makes all of the 
premises true also makes at least one of the conclusions 
true. 

 
● Rule  

○ A rule of the form  has a finite set of ​assumptions​, 
β​0​…β​n-1 ​and a single ​conclusion​, α. In different proof systems the 
assumptions and conclusions may be expressions, entailments, or 
sequents. We focus on Gentzen’s sequent calculus. 

○ A proof tree is constructed by connecting rules so that the 
conclusion of one rule becomes an assumption of another.  

○ A proof is a proof tree such that every branch terminates in a rule 
with no assumptions. It proves the sequent at the root of the tree.  
(In Gentzen’s sequent calculus, the only rule with no assumptions  
is the immediate rule, (I).) 

○ A sequent is provable iff it has a proof. 
 

● Sound  
○ A proof system is sound if any sequent that is provable is valid. 
○ A rule is sound iff whenever all of the assumptions are valid, then 

so is the conclusion.  
○ So, if all of the rules we use are sound then any provable sequent 

is valid - and the proof system is sound. 
In fact this is a necessary and sufficient condition for soundness. 

○ We can also show that a rule is sound by showing that any 
counterexample to the conclusion is a counterexample to (at least) 
one of the assumptions. 

 
● Complete  

○ A proof system is complete if every sequent that is valid  is 
provable.  

○ One way to show that a proof system is complete is to show that if 
a sequent is not provable, then it has a counterexample. 

○ Some authors say that a rule is complete if a counterexample to 
any of the assumptions provides a counterexample to the 
conclusion. However, having a set of complete rules, in this sense, 
is neither a necessary nor a sufficient condition for the 
completeness of a proof system. 



○ Nevertheless, for Gentzen’s system the completeness of each rule 
is a key component of the proof of completeness. 

 
● Automaton (DFA/NFA) 

○ An automaton has states Q, including a set A of ​accepting states 
and a set B of ​start states​, an  alphabet Σ, and transitions δ. Each 
transition is an arrow between two states (which may be the same 
state), labelled with a symbol from the alphabet Σ.  

 
● State (DFA/NFA) 

○ A position within an Automaton. 
 

■ Start State: A state in the set of start states.  
■ Accepting State: A state in the set of accepting states 
■ Alphabet: A set of ​symbols ​ used to label transitions 
■ Transition  s : a → b 

An ordered pair (a, b) of states, together with a symbol s 
from the alphabet. 

 
●  Trace 

○ A trace for a string of length n is a sequence of n+1 states (say 
states s​0​ ... s​n ​) connected by a chain of n transitions, t ​i​ : s ​i−1​→ s​i ​, for 
i=1…n, such that the i ​th ​ transition is labelled by the i ​th​ symbol in the 
string. 

○ A trace is just the path that you follow given a string.  Like how 
you might "trace" your finger over the arrows to keep track of 
what state you're in. 

○ An automaton ​accepts​ a string σ if there is a trace s​0​ ... s ​n ​for σ 
such that s​0 ​is a start state and s​n ​ is an accepting state. 

○ The language accepted by the automaton  is the set of strings that 
the automaton accepts. 

 
● Regular Expression (RegEx): 

○ We define a regular expression for an alphabet  Σ 
■ Every symbol s in  Σ is a regular expression 
■ If R and S are regular expressions so are 

● R*   iteration 
● RS  sequence 
● R|S alternation 

The precedence of these operations is 
      Iteration > sequence > alternation 
 and we use parentheses where necessary. 
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