
Lecture 3

Inf1A: Non-deterministic Finite
State Machines

3.1 Introduction

In this lecture we deal with non-deterministic Finite State Machines, a class of machines
which are a generalization of deterministic Finite State Machines As in Lecture 2, we will
mostly be concerned with Finite State Machines which are acceptors (ie, have no output
alphabet). Therefore we will also be concerned with the type of languages that can be
accepted by some Finite State Machine.

It can be shown that when we consider acceptors, the class of non-deterministic FSMs
is the same as the class of deterministic FSMs. This result, which is known as the
Conversion Theorem, is difficult to prove, so we will only hint at the reasons it is true
(full proof next year!). The result means that when we are considering acceptors, we
can always use non-deterministic FSMs rather than deterministic FSMs if we want to
(because there is always some deterministic FSM which will accept the same language
as our non-deterministic machine).

3.2 Formal Definitions

The main difference between non-deterministic Finite State Machines and the machines
we have encountered so far in our lectures is that in an non-deterministic FSM, there
may be input strings which have more than one trace.

The concept of non-determinism gives us more flexibility when we are modelling reactive
systems: we can use it to help us describe systems whose behaviour we cannot com-
pletely predict. There is a price to pay for this flexibility - we will no longer have the
nice property that for every input string there is exactly one computation path (trace)
that can be predicted from the description of the FSM. This means (for example) that
the implementation of a non-deterministic FSM in a programming language will not be
a straightforward task.

However, our main interest in non-deterministic FSMs is in the study of formal lan-
guages, for which they are very valuable. Here is the definition of an (acceptor-type)
non-deterministic FSM:
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Definition 3.1 (Non-deterministic FSM)
A Non-deterministic Finite State Machine (N-FSM) of the acceptor type is a machine

�
defined as a 5-tuple ���������
	��
���������
���
consisting of

1. a finite set
�

of states

2. a finite alphabet
	

3. a distinguished start state
�������

4. a set
�����

of accepting states, and

5. a description
�

of all the possible transitions of the FSM.

The description
�

is no longer required to be a function from
����	

to
�

, as it was
for D-FSMs. It is a more general description, that associates some subset of

�
with

every state from
�

, for every “symbol” from
	! #"�$&%

. Formally
�

is a function of the
form

��'(������	# )"�$&%*�,+.-����/�
, where

-����/�
is the power set of

�
.

The symbol
�

is pronounced “del-ta”, just like 0 - but the symbol
�

is Capital “del-ta”.
It may be the case that some of you have not seen the power set notation

-����1�
before.

The notation
-����/�

denotes the “set of all subsets of
�

”. So every element of the power
set

-����1�
is itself a set. For example, consider the FSM from Figure 2.4, which has the

states 2 �
3 and 4 . In this case the state set
�

is
" 2 �
35� 4 % . Therefore the power set

-����1�
is"�65�7" 2 %8�7"�3(%8�7" 4 %(�7" 2 �
35%8�&" 2 � 4 %(�7"*35� 4 %9�7" 2 �
3:� 4 %;% . The symbol

6
denotes the empty set.

Another way of viewing
�

is as a subset of
�<�!��	! ="�$&%*�>�?�

, that is, a ternary relation,
where a tuple

�A@5��BC��@�DE�
is in

�
if a transition from

@
to
@;D

is possible on input
B

(if and
only if

@*DF�)�G�A@5��B:�
). Therefore,

�
is sometimes referred to as the transition relation of the

N-FSM.

Notice that the set of all N-FSMs includes, as a subset, the set of all D-FSMs (because
every deterministic FSM automatically satisfies the definition of an N-FSM). This means
that the following definition holds for both D-FSMs and N-FSMs. Recall from Lecture 1
that we say that the string H is accepted by an FSM if there is some trace for H that ends
in a state from

�
. We need to extend the definition of a trace for N-FSMs (because we

allow
$
-transitions as well as transitions that consume a symbol of the input alphabet).

Definition 3.2: (Trace)
Let

� �������
	��
���������
�I�
be an N-FSM. Let H �=	KJ be an input string to the machine. We say

that �L�*�NMNOP�
�8O&�NMRQ;�&S&S&SP�
�LT(UFO7�NMRTV�
�LT
is a trace for the string H if for every

M�W
, 2YX[Z�X]\ we have

M^W_��	` ="�$7%
, if H is equal to the

concatenation1 of
M�OP�&S&S&SP�NM�T

, and if for every 2aX`Z�Xb\ ,
�7Wa���G�c�LdeUFO&�NMeW*�

.

Definition 3.3 ( H accepted by an N-FSM)
Let

�f�g���_�
	��
���*�����
���
be any N-FSM. Let H �)	 J . Then the string H is accepted by

�
if and

only if there is some trace for H in
�

such that the final state
� T

of that trace is an element
of the set

�
of accept states.

1We will explain concatenation in the next lecture note. It essentially means “merging” of hjilkNmlmlmlkAhen .
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Definition 3.4 (Language accepted by an N-FSM)
Let

� �������
	��
�������>�
���
be any N-FSM. Then the language � �c� �

accepted by the N-FSM
�

is
� �c� �`� " H �=	 J�� � accepts H %8S

Definition 3.4: (Regular languages)
Let � be any language over the alphabet

	
(that is, � is some subset of

	 J
). Then � is a

regular language if there is some FSM
�

such that � �c� � � � .

In Definition 3.4 we have been unclear about whether we consider N-FSMs or the more
restricted class of D-FSMs in making our definition of regular languages. We will assume
we are are working with the general class of N-FSMs (though in fact it does not matter).

3.3 Some examples

In general, Non-deterministic Finite State Machines have the advantage that it can often
be easier to specify a language (or in the transducer variant of N-FSMs, to model a
complex system). We now give a few examples where we see this in action.

Before we start, notice that there is more than one “type of non-determinism” that an
N-FSM can possess. The first type happens when we have some state

@
and some sym-

bol
BI�)	

such that the set
�G�A@5��B:�

contains more than one element. That models the case
when we have at least two arrows leaving

@
labelled with

B
. That means that whenever

we follow a partial computation to the state
@

and the next input symbol is
B
, there are

at least two possible “next states”.

The second type of non-determinism happens when we have some state
@

such that
the set

�G�A@5�
$
�
is non-empty. That models the case when we have at least one arrow

labelled
$

leaving the state
@
. Then whenever a partial computation arrives at

@
, it make

a transition to another state without reading any input symbol.

3.3.1 Example

0 1 2 3
a b a

a,b

Figure 3.1: N-FSM to accept strings ending in aba

Figure 3.1 shows an N-FSM
�

to accept strings over
	 � "

a
�
b
%

which end in aba. The
machine

�
has the formal description

�����N"�� � 2 �
35� 4 %8�7" a � b %8��� �7" 4 %8�
�	�5�
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where the transition relation
�

is given by the following table:

�
a b� "�� � 2 % "��5%

2 6 "�3(%
3 " 4 % 6
4 6 6

When we see the empty set symbol
6

in the table, it tells us that for the given state and
symbol, there is no possible transition to any state. Therefore there can be no trace
through the given state reading the given symbol (though, since this is an N-FSM, there
may be alternative paths/traces through the FSM).

If we look at the Finite State Machine in Figure 3.1, we can see that there are no transi-
tions labelled

$
(and therefore the table above does not need a column labelled

$
. So for

this example, the machine
�

only has one type of non-determinism.

Now examine the machine, and notice that any string of as and bs is accepted by the
machine if it passes through the sequence of states 2 �
3 and 4 at the very end of its trace.
This happens if and only if the string ends in aba. Therefore the language accepted by
the N-FSM of Figure 3.1 is

� �c� � ��� H aba � H � " a � b % J�� S

Notice that because the machine is non-deterministic, there may be many traces for a
given string H � " a � b % J . For example, it is an interesting task to count the number of
traces for ababa.

3.3.2 Example

Next consider the language accepted by the deterministic FSM in Figure 1.2 of Lecture 1.
This FSM accepts a certain language over the alphabet

	 � "
0
�
1
%
. We have already

discussed the language accepted by the D-FSM of Figure 1.2 a little. We note that it
is certainly the case that for every string H accepted by that D-FSM, the number of 0s
and of 1s in H differ by at most 2 . However, a stronger property must hold if H is to
be accepted. If you re-examine Figure 1.2 and experiment with a few extra strings
from

	�� "
0
�
1
%
, you will eventually work out that the language accepted is the set of all

strings H over
	[� "

0
�
1
%

such that H consists of a sequence of 01s and 10s, possibly with
a 0 or 1 added at the end.

It takes some work to decipher which language is accepted by Figure 1.2, even when we
have a diagram of the FSM. In Figure 3.2 we give an N-FSM which accepts exactly the
same language, and we observe that it is much easier to decipher the language accepted
by this particular machine. This is because we can represent the 01 and 10 choices by
separate branches in the FSM, and use

$
-transitions to move to either of them. Notice

that our new machine has both types of non-determinism, as is clear from the
�

-table
below Figure 3.2. However, the only times we have a choice of “next state” happens when
we are reading an

$
, so in some sense we are only really dealing with

$
-non-determinism

for this example.
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1 0

0 1

�

�

�

�

�

2 3 4

1

5 6 7

8

Figure 3.2: An N-FSM for the same language as Figure 1.2.

The transition relation
�

is given by the following table:

�
0 1

$
2 6 6 "�35���(%
3 6 " 4 % 6
4 "�� % 6 6
� 6 6 "��(%
� "��(% 6 6
� 6 "	�9% 6
� 6 6 "��(%
� 6 6 " 2 %

Some of the strings of the language accepted by
�

are

� �c� �,� "�$&�
0
�
1
�
01
�
10
�
010

�
101

�
1010

�&S&S&SE%

and so on. It is a worthwhile exercise to consider some longer sequences and check
that they are accepted by Figure 3.2 if and only if they were accepted by the original
machine in Figure 1.2 (since part of our goal was to check both machines accept the
same language).

3.4 Building N-FSMs from the bottom up

We are now familiar with the definition of non-deterministic Finite State Machines and
have some idea of the way they work. We have seen a couple of examples of these
machines, and discussed how it is very important to test for correctness of the FSM.

We will now focus on the main advantage of N-FSMs (as opposed to D-FSMs), which is
that they allow us to build large FSMs in a piecewise fashion, by fitting smaller FSMs
together in an appropriate fashion. We will see that the

$
-transitions allowed in an

N-FSM will be very helpful for combining small machines into larger machines which
perform more complex computations. Throughout this section we will assume that we
are dealing with acceptors, to make life simpler. It will also make our life easier to
assume that the FSMs that we are dealing with have just one accept state. Therefore we
make the following observation:
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Observation: Any FSM that has multiple accepting states can be converted to one with a
single accepting state by connecting the existing accepting states to a new accepting state
using

$
-transitions and relabelling all the existing accepting states as normal states.

We now define some operations on FSMs and argue (but do not formally prove) that they
are correctly defined. These operations will allow us to build up expressions that can
be helpful in defining large FSMs. In the following diagrams we use

$
transitions to join

up machines. Whenever a smaller FSM is being used as a building block in a larger
construction, we will represent the smaller FSM by an ellipse (with a label), and we will
indicate the state state and the accept state of the small machine by the left-hand circle
and the right-hand circle inside the ellipse respectively.

Sequence: To construct the machine that performs the computation of the N-FSM
� O

followed by the computation of the N-FSM
�[Q

, we construct a new machine
�

with a
new start state and a new accepting state. Then we

1. add an
$
-transition from the new start state to the start state of

� O
;

2. add an
$
-transition from the accept state of

� O
to the start state of

� Q
;

3. add an
$
-transition from the accept state of

� Q
to the new accept state.

4. change the status of the original accept states of
� O

and
� Q

so that neither of these
are accept states any more.

Then the new machine
�

will accept any string which consists of a string belonging
to � �c�[O � followed by a string belonging to � �c�bQL� . Formally, we say that � �c� �Y� " H�� �
H � � �c� O �
� � � � �c� Q �
%8S A diagram showing this construction is given in Figure 3.3. Any
accepting trace of

� O
�`Q
will consist of an accepting trace of

� O
followed by an accepting

trace of
� Q

.

� � �

M1 M2

Figure 3.3:
� O
��Q

—
�[O

followed by
�!Q

Choice: We use the choice construction when we want to construct an N-FSM
�

which
will choose to either perform the computation of the N-FSM

� O
or perform the compu-

tation of the N-FSM
� Q

, but not both. We construct
�

by adding a new start state and
a new accept state, by adding an

$
-transition from the new start state to the start state

of
�bO

and also to the start state of
�bQ

, and by adding an
$
-transition from the accept

states of
�[O

and of
�`Q

to the new accept state. Then we change the status of the accept
states of

�[O
and

�`Q
so they are no longer accepting.

A diagram showing this construction is given in Figure 3.4.
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� �

�
�

M1

M2

Figure 3.4:
� O � ��Q

—
�[O

or
�`Q

Repeat: We use the repeat construction when we want to construct an N-FSM
� J

which can perform the computation of a given N-FSM
�

as many times as necessary,
including

�
times. The machine

��J
is constructed by adding a new start state and

accept state. Then we add an
$
-transition from the new start state to the start state

of
�

, from the original accept state of
�

to the new accept state, and also add a direct$
-transition from our new start state to our new accept state (this is to make sure that

we can perform the computation
�

times and end in an accept state). We also add an$
-transition from the accept state of

�
to the start state of

�
, to allow iterations of the

FSM
�

.

A diagram showing this construction is given in Figure 3.5.

�

� �

�

M

Figure 3.5:
� J

— repeat
�

zero or more times

Intersection: Computing the intersection of the strings accepted by two machines,
� O

and
�`Q

, requires more work than the previous examples. It is necessary to construct
a new machine

�
that simulates both of the machines, at each step inspecting to see

if a joint move is possible. It is possible to give a construction that works properly for
N-FSMs but for this particular operation we will only describe the construction for FSMs
without

$
-transitions (just to make the construction slightly simpler). The construction

of the machine
�

that recognises the intersection is achieved as follows:

� We define the set of states of the new machine to be pairs of states, one state
from

�[O
, and one state from

�!Q
. So if

�[O
has � states and

�!Q
has

@
states the

machine for
�[O�� �`Q

has �
@

states.
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� The start state of the new machine is the pair of the start states of
� O

and
�`Q

.

� There is only one accepting state of the new machine. It is the state which is the
pair of the accepting states of

� O
and

� Q
.

� There is a transition labelled a in the new machine between state
�
�
��@8�

and
���*�
�*�

if
and only if there is a transition labelled a between � and

�

in
� O

and a transition
labelled a between

@
and

�
in the

� Q
.

It is not very difficult to reason that a string H will be accepted by the intersection
machine if and only if it is accepted by both

�]O
and

�`Q
.

0 0

000

1

1 1

1

1

1

0

1 1

0

0

1 1

1

0

00

Figure 3.6:
� O�� �`Q

— intersect
� O

and
�`Q

The example in Figure 3.6 illustrates the machine for the intersection of a particular two
state FSM and a particular three state machine FSM. It’s not so easy to give a diagram
for the general case!

Interleaving: Now we consider the question of constructing a machine which performs
the computations of two FSMs

��O
and

�`Q
, but allows the computations to interleave in

any order. This is a generalization of the sequence operation. Like intersection, the
construction is a bit more complicated than our earlier three operations (it is also a bit
less useful, this operation is not commonly used). We construct the FSM

�
from the

two FSMs
� O

and
� Q

as follows:

� Again, our set of states of
�

corresponds to pairs of states, one from
� O

, and
another from

�!Q
.
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� There is a transition labelled a in the new machine between state
�
�
��@8�

and
���*�
�*�

if
and only if there is a transition labelled a between � and

�

in
� O

and
@�� �

, or a
transition labelled a between

@
and

�
in the

�[Q
, and �

� �

.

The example in Figure 3.7 illustrates the machine for the interleaving of a particular
two state FSM and a particular three state FSM.

0,b

0,b0,b0,b

0,b

1 1 1 1 1 1

a a

a

a a

0,b

1 1

0

0

a a

a

b b

b

a

Figure 3.7:
�[O � � �`Q

— interleave
�[O

and
�`Q

Other Operations: The operations we have defined above certainly offer a good way of
writing down complex FSMs while keeping control of the way they interact. It may be
that to be really useful we would need other operations. One example is the idea of being
able to interrupt the current activity to deal with some other activity and then return to
the state the interrupt took place in when the interrupting activity is complete. Can you
think of any others?
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Now we have all these operations we should show how to use them. If we use x to stand
for the simple two state machine that only accepts the letter x and so on for all the
other letters then we can use the operations to combine these basic machines to give us
structured descriptions of the FSM. From then on we can treat the detailed description
as implementation detail and work with the structured definitions.

For example, the expression
�N�
0
�
1
� J
11
�
0
�
1
� J �

represents the machine that accepts
all sequences of 0s and 1s that contain two successive 1s. Using the definition of the
operations we can build up the machine for this expression piece-by-piece. Figure 3.8
accepts any sequence of zeroes and ones. Figure 3.9 uses the machine of Figure 3.8 to
build our final machine.

�

�

�

� �

�

�

�

1

0

1,0

Machine for (0|1)*

Simplified version

Figure 3.8: Machine for
�
0
�
1
� J

�

�

�

�

�

�
�

1 11,0 1,0

Machine for (0|1)*11(0|1)*

1,0 1 1 1,0

Simplified version

Simplified to eliminate epsilon transitions

1 1

1,0 1,0

Figure 3.9: Machine for
�N�
0
�
1
��J
11
�
0
�
1
�lJ&�

Notice that following this strict procedure for building FSMs means that we end up with
a lot of extra

$
-transitions and intermediate states that we do not really need. When we

follow a strict of rules, we often end up with redundancy in the FSM.

24



Computation & Logic: Lecture 3 on Computation Informatics 1A (2004)

3.5 D-FSMs versus N-FSMs

We have already mentioned that there is a theorem called the Conversion theorem, that
proves that N-FSMs and D-FSMs recognise exactly the same class of languages, the class
of regular languages. We are not going to prove this theorem in this course.

It is natural to ask why we bother to consider two different types of Finite State Machines,
when they represent exactly the same class of languages? The reason is that the two
frameworks have different advantages. The determinism of a D-FSM is important when
implementing a program (or physical machine) for recognising a regular language. N-
FSMs are not as well suited to language recognition because nondeterminism gives the
machine the possibility of making choices. In general, when an N-FSM is directly used
for language recognition, it is necessary to backtrack and explore all possible choices: a
time consuming activity.

However, N-FSMs have the advantage that they are a lot easier to build, especially when
we want to construct a FSM to accept a relatively complicated class of languages. So for
the purposes of modelling languages (and often for modelling systems), they provide a
more intuitive framework than D-FSMs.

3.6 Summary

In this lecture note we have

� Given a formal definition of a Non-deterministic FSM (N-FSM) and of the language
accepted by an N-FSM.

� Given a couple of example N-FSMs which are simpler than corresponding D-FSMs
to accept the same languages.

� Shown how N-FSMs can provide a framework for building Finite State Machines
from the bottom up.

These notes have been adapted from two sets of earlier notes, the first due to Stuart Anderson,
Murray Cole and Paul Jackson, and the second due to Martin Grohe and Don Sannella.

Mary Cryan, November 2004
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