NFA and regex

® g-transitions
® regular expressions

Informatics 1
School of Informatics, University of Edinburgh

Two examples

o 1 ./\1
0 .’ binary

0 1 0 numbers

klnput sequence is accepted if it ends with a zero.)

4 1)
0 1 Odd
u binary
8 1 .@ numbers

anut sequence is accepted if it ends with a one. .

-

i Informatics 1

School of Informatics, University of Edinburgh

The complement of a DFA regular
language is DFA regular

0 1 1
.‘ Lo : even numbers
0) =0 mod 2
0 1 A
1 L1: odd numbers

OWBo = 1 mod 2
0

i Informatics 1

School of Informatics, University of Edinburgh

Three examples

/

-

1

1

0 0 1
—@__ 1o

0

\

J

Which
binary
numbers
are
accepted?

-

-

o 1 0
—(__ O 1=

1 0

~

1

J

-

o 1 0
—C_ 1 @

-

1 0

nformatics 1

® Inf
' School of Informatics, University of Edinburgh

The complement of a DFA regular
language is DFA regular

-

-

o 1 0 1
—@@___ 1=

1 0

~

J

-

o 1 0
—(__OL ®

1 0

~

1

If A C 2" is recognised
by M
then A =2*\ A
IS recognised by
M
where M and M are
identical except that
the accepting states
of M are the non-
accepting states of M
and vice-versa

Informatics 1
School of Informatics, University of Edinburgh

divisible by three

not
divisible by three

® Info
' Sc

rmatics 1
hool of Informatics, University of Edinburgh

The intersection of two DFA regular
languages is DFA regular

v Lo=0mod 3

O Y | Lr=1mod3
l>o-=2mod 3

Informatics 1
School of Informatics, University of Edinburgh

The intersection of two DFA regular
languages is DFA regular

—
&
. 0)
/ \

o 1 0 1
—@___1 1=

N 1 0 J

divisible by 6

divisible by 2
and
divisible by 3

Informatics 1
School of Informatics, University of Edinburgh

The intersection of two DFA-regular
languages is DFA-regular

. Run both machines in
1] & parallel?
O
0

O Build one machine
that simulates two

S D . e
machines running in
) arallel!
0 1 0 1 P
.’.@ Keep track of the
1 0 state of each
J

machine.

Informatics 1
School of Informatics, University of Edinburgh

The intersection of two DFA-regular
languages is DFA-regular

-G

2N
l

01 01 T

@I 0 —
&
1 0

Informatics 1
School of Informatics, University of Edinburgh

10

intersection of
languages

run the two machines in parallel

when a string is in both languages,
both are in an accepting state

1"

intersection of Q

1
anguages
run the two machines in parallel ’.’
0

when a string is in both languages,
both are in an accepting state

i
O @

12

intersection of two
regular languages
IS regular

run two
machines
IN
synchrony

union of languages

run the two machines in parallel
when a string is in the union of the
two languages, either or both are in
an accepting state

14

union of two
regular languages
IS regular

run two
machines
IN
synchrony

The DFA-regular languages A € 2~
form a Boolean Algebra

e Since they are closed under intersection
and complement.

Informatics 1
School of Informatics, University of Edinburgh

16

The DFA-regular languages A € 2* form a
Boolean Algebra &Y

Are the DFA-regular languages closed under
concatenation RS and iteration ()* ?,

we define non-deterministic NFA
— FSM with e-transitions —

and show that:

for each regex p there is an NFA that accepts
exactly the strings matching p

every NFA is equivalent to some FSM
every FSM is equivalent to some DFA

Informatics 1
School of Informatics, University of Edinburgh

17

FSM model
non-deterministic
machines

multiple threads of computation
running in parallel

multiple start states

NFA any number of start
states and accepting states

3|

~ \,O.

OO RRe
ﬂ/eT\il 0
\ o]
>6\'73/;8

An FSM accepts a word iff there is a trace
from some start state qo
to some finish state qn
along transitions that spell out the word

An FSM accepts a word iff there is a trace
from some start state qo
to some finish state qn
along transitions that spell out the word

An FSM accepts a string iff there is a trace
from some start state Qo
to some finish state gn
along transitions that spell out the string

An e-FSM accepts a string iff there is a trace
from some start state Qo
to some finish state gn
whose non-¢ transitions spell out the string

An e-FSM accepts a string iff there is a trace
from some start state Qo
to some finish state gn
whose non-¢ transitions spell out the string

An e-FSM accepts a string iff there is a trace
from some start state Qo
to some finish state gn
whose non-¢ transitions spell out the string

If R € (2u{e})* is a regular language
with the alphabet 2u{e} (where eg2)
thenR//e={s//e|seR}isregular

where s // €is
the result of removing every € from s

often ‘explained’ as
€ stands for the empty string

today we will use this theorem
tomorrow we will prove it

(alb)* > Da,b

a*|bx ?7?

e-NFA

any number of start and finish states

€ - transitions ‘hidden actions’
‘matching the empty string’

~

>\

sequence
RS

alternation R|S

R\

(S\‘} |
o

iteration R*

regular expressions
each regex is a pattern that matches a set of strings

® any character is a regex

e matches itself
e if R and s are regex, SO is RS

e matches a match for R followed by a match for S
e if Rand s are regex, SOISR|S

e matches any match for R or S (or both) K|eene > 477
e if R iS a regex, So is R* - wd
epnen Lole Kieene
matches any sequence of 0 or more matches for R 1909-1994

¢ The algebra of regular expressions also includes elements 0 and 1
e 0 = @ matches nothing; 1 = I* matches everything

e ¢ = @* matches the empty string

O]R =R|0 =R l1|lR=R|1 =1
OR =RO0O =0 eR = Re = R
e = 0% A* = g|AA* = g|A*A

the language of strings that match a regex, R, is recognised by some £-FSM

regular language = recognised by some FSM

DFA regular languages — closed under Boolean operation
e-FSM-regular languages — closed under regex operations

regex languages — strings matching some regex

FSM DFA e-FSM
all recognise the same languages

every regular language is defined by some regex

regex languages are closed under Boolean operations

