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NFA and regex

• ε-transitions

• regular expressions
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Two examples
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Input sequence is accepted if it ends with a zero.
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Input sequence is accepted if it ends with a one.
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Odd 
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The complement of a DFA regular 
language is DFA regular
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0 L0 : even numbers
= 0 mod 2

L1 : odd numbers
= 1 mod 20
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Three examples
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Which 
binary 
numbers 
are 
accepted?
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The complement of a DFA regular 
language is DFA regular
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If A ⊆ Σ* is recognised 
by M 

then A̅ = Σ* \ A 
is recognised by  

M̅ 
where M̅ and M are 
identical except that 
the accepting states 

of M̅ are the non-
accepting states of M 

and vice-versa

1

1

1

0 0

0 2

1

0

0 1

1

1

0 0

1 2

1

0

2



Informatics 1 
School of Informatics, University of Edinburgh

By three or not by three?
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divisible by three1
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The intersection of two DFA regular 
languages is DFA regular
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L0 = 0 mod 3
L1 = 1 mod 3
L2 = 2 mod 3
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The intersection of two DFA regular 
languages is DFA regular
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divisible by 6 
≣ 

divisible by 2 
and  

divisible by 3
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The intersection of two DFA-regular 
languages is DFA-regular
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Run both machines in 
parallel? 

Build one machine 
that simulates two 

machines running in 
parallel! 

Keep track of the 
state of each 

machine.
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The intersection of two DFA-regular 
languages is DFA-regular
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0

0

1
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0

intersection of 
languages 

run the two machines in parallel 
when a string is in both languages, 

both are in an accepting state
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1 10
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0

intersection of 
languages 

run the two machines in parallel 
when a string is in both languages, 

both are in an accepting state
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intersection of two 
regular languages 

is regular
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1 10

0
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union of languages 
run the two machines in parallel 

when a string is in the union of the 
two languages, either or both are in 

an accepting state
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union of two 
regular languages 

is regular
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The DFA-regular languages A ⊆ Σ* 
form a Boolean Algebra

• Since they are closed under intersection 
and complement.
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The DFA-regular languages A ⊆ Σ* form a 
Boolean Algebra

Are the DFA-regular languages closed under 
concatenation R S    and       iteration ( )*  ?, 


we define non-deterministic NFA  
— FSM with ε-transitions —


and show that:

for each regex p there is an NFA that accepts 

exactly the strings matching p

every NFA is equivalent to some FSM

every FSM is equivalent to some DFA
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FSM model 
non-deterministic 

machines 

multiple threads of computation 
running in parallel 

multiple start states
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NFA any number of start 
states and accepting states

S

19

R



An FSM accepts a word iff there is a trace

from some start state q0 

to some finish state qn


along transitions that spell out the word
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An FSM accepts a word iff there is a trace

from some start state q0 

to some finish state qn


along transitions that spell out the word

0 1

3

6

4 5

2

7 8

b

d

e
g

c

a

t
h

o

t i

c

o

d

e



An FSM accepts a string iff there is a trace 
from some start state q0  
to some finish state qn 

along transitions that spell out the string
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An ε-FSM accepts a string iff there is a trace 
from some start state q0  
to some finish state qn 

 whose non-ε transitions spell out the string
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An ε-FSM accepts a string iff there is a trace 
from some start state q0  
to some finish state qn 

 whose non-ε transitions spell out the string
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An ε-FSM accepts a string iff there is a trace 
from some start state q0  
to some finish state qn 

 whose non-ε transitions spell out the string
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If R ⊆ (Σ⋃{ε})* is a regular language 

with the alphabet Σ⋃{ε} ( where ε∉Σ ) 

then R // ε = { s // ε | s ∈ R } is regular

where s // ε is  

the result of removing every ε from s  

often ‘explained’ as  
ε stands for the empty string 

today we will use this theorem 
tomorrow we will prove it



a* a

b* b

a*|b* ??



(a|b)* a,b

a*|b* ??
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a*|b*



ε a

ε
q0

b

a*|b*



ε-NFA 
any number of start and finish states

ε - transitions ‘hidden actions’
‘matching the empty string’

SR



sequence 
RS

ε
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SR

ε



alternation  R|S
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SR



iteration  R*

ε

34

R

ε
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• any character is a regex
• matches itself

• if R and S are regex, so is RS 
• matches a match for R followed by a match for S 

• if R and S are regex, so is R|S 
• matches any match for R or S (or both)

• if R is a regex, so is R* 
matches any sequence of 0 or more matches for R

• The algebra of regular expressions also includes elements 0 and 1
• 0 = ∅ matches nothing;  1 =  Σ* matches everything

• ε = ∅* matches the empty string 
0|R = R|0 = R    1|R = R|1 = 1       

0R = R0 = 0    εR = Rε = R 
            ε = 0*    A* = ε|AA* = ε|A*A

regular expressions 
each regex is a pattern that matches a set of strings

1909-1994

Kleene *

*+

Stephen Cole Kleene 

the language of strings that match a regex, R, is recognised by some ε-FSM



regular language ≡ recognised by some FSM


DFA regular languages — closed under Boolean operation


ε-FSM-regular languages — closed under regex operations


regex languages — strings matching some regex


FSM DFA ε-FSM 

all recognise the same languages


every regular language is defined by some regex


regex languages are closed under Boolean operations


