NFA and regex

® g-transitions
® regular expressions
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Two examples

o 1 ./\1
0 .’ binary

0 1 0 numbers

klnput sequence is accepted if it ends with a zero. )

4 1 )
0 1 Odd
u binary
8 1 .@ numbers

anut sequence is accepted if it ends with a one. .
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The complement of a DFA regular
language is DFA regular

0 1 1
.‘ Lo : even numbers
0 ) =0 mod 2
0 1 A
1 L1: odd numbers

OWBo = 1 mod 2
0
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Three examples
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Which
binary
numbers
are
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The complement of a DFA regular
language is DFA regular
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If A C 2" is recognised
by M
then A =2*\ A
IS recognised by
M
where M and M are
identical except that
the accepting states
of M are the non-
accepting states of M
and vice-versa
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divisible by three

not
divisible by three
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The intersection of two DFA regular
languages is DFA regular

v Lo=0mod 3

O Y | Lr=1mod3
l>o-=2mod 3
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The intersection of two DFA regular
languages is DFA regular

—
&
. 0 )
/ \

o 1 0 1
—@___1 1=

N 1 0 J

divisible by 6

divisible by 2
and
divisible by 3
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The intersection of two DFA-regular
languages is DFA-regular

. Run both machines in
1] & parallel?
O
0

O Build one machine
that simulates two

S D . e
machines running in
) arallel!
0 1 0 1 P
.’.@ Keep track of the
1 0 state of each
J

machine.
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The intersection of two DFA-regular
languages is DFA-regular
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intersection of
languages

run the two machines in parallel

when a string is in both languages,
both are in an accepting state

1"



intersection of Q

1
anguages
run the two machines in parallel ’.’
0

when a string is in both languages,
both are in an accepting state
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intersection of two
regular languages
IS regular

run two
machines
IN
synchrony




union of languages

run the two machines in parallel
when a string is in the union of the
two languages, either or both are in
an accepting state
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union of two
regular languages
IS regular

run two
machines
IN
synchrony




The DFA-regular languages A € 2~
form a Boolean Algebra

e Since they are closed under intersection
and complement.
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The DFA-regular languages A € 2* form a
Boolean Algebra &Y

Are the DFA-regular languages closed under
concatenation RS and iteration ()* ?,

we define non-deterministic NFA
— FSM with e-transitions —

and show that:

for each regex p there is an NFA that accepts
exactly the strings matching p

every NFA is equivalent to some FSM
every FSM is equivalent to some DFA
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FSM model
non-deterministic
machines

multiple threads of computation
running in parallel

multiple start states




NFA any number of start
states and accepting states
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An FSM accepts a word iff there is a trace
from some start state qo
to some finish state qn
along transitions that spell out the word



An FSM accepts a word iff there is a trace
from some start state qo
to some finish state qn
along transitions that spell out the word



An FSM accepts a string iff there is a trace
from some start state Qo
to some finish state gn
along transitions that spell out the string



An e-FSM accepts a string iff there is a trace
from some start state Qo
to some finish state gn
whose non-¢ transitions spell out the string



An e-FSM accepts a string iff there is a trace
from some start state Qo
to some finish state gn
whose non-¢ transitions spell out the string



An e-FSM accepts a string iff there is a trace
from some start state Qo
to some finish state gn
whose non-¢ transitions spell out the string



If R € (2u{e})* is a regular language
with the alphabet 2u{e} ( where eg2 )
thenR//e={s//e|seR}isregular

where s // €is
the result of removing every € from s

often ‘explained’ as
€ stands for the empty string

today we will use this theorem
tomorrow we will prove it
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e-NFA

any number of start and finish states

€ - transitions ‘hidden actions’
‘matching the empty string’
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sequence
RS




alternation R|S

R\
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iteration R*




regular expressions
each regex is a pattern that matches a set of strings

® any character is a regex

e matches itself
e if R and s are regex, SO is RS

e matches a match for R followed by a match for S
e if Rand s are regex, SOISR|S

e matches any match for R or S (or both) K|eene > 477
e if R iS a regex, So is R* - wd
epnen Lole Kieene
matches any sequence of 0 or more matches for R 1909-1994

¢ The algebra of regular expressions also includes elements 0 and 1
e 0 = @ matches nothing; 1 = I* matches everything

e ¢ = @* matches the empty string

O]R =R|0 =R l1|lR=R|1 =1
OR =RO0O =0 eR = Re = R
e = 0% A* = g|AA* = g|A*A

the language of strings that match a regex, R, is recognised by some £-FSM



regular language = recognised by some FSM

DFA regular languages — closed under Boolean operation
e-FSM-regular languages — closed under regex operations

regex languages — strings matching some regex

FSM DFA e-FSM
all recognise the same languages

every regular language is defined by some regex

regex languages are closed under Boolean operations



