HHH B

Computation and Logic
DFA

Michael Fourman
@mp4man

Survey Monkey Link

If we start from an expression then
we can draw an equivalent circuit with:
a wire for each subexpression,
R=(XAY)VZ a logic gate for each operator,
and an input for each variable.

e (@anAb)v

If we start from an expression then
we can draw an equivalent circuit with:
a wire for each subexpression,
R=(XANY)VZ a logic gate for each operator,
and an input for each variable.

X A XAy) vy
) Z
V xA =V x AV vy
V xayvz = V xa V V z

Relationships between the values on the wires

X A XAy)vy
R=(XAY)VZ

y 4
Relationships between the values on the wires
V xa =V x ANV y
V xayvz =V xa V V z
The following expressions must be true

V XA~ &V x AN V vy
V Xayvz &V xA V V z

X A XAy)vy
R=(XAY)VZ

\ y4

The following expression must be trueb

r d
V kayyvz &V xXa V V z

*CL7> [x,y,z] = "xyz"

*CL7> r@(a :|: b) = (Vx :&: Vy) :|:Vz

*CL7> r

V 'x' & V'y' |V 'z

*CL7> a

vV 'x' &V 'y!

*CL7> b

v 'z

*CL7> Vr :<->: Va:|l: Vb

V (V 'x" :&: V'y' :|: V '2') :<=>: V(V 'x" :&: V'y"'") :|: V('z")

r a b

X A XAy)vy
R=(XAY)VZ

\ y4

The following expression must be true

r a b
V xayvz &V xa V V z

*CL7> [r,a,b] = "rab"
*CL7> wffToForm (V r :<->: V a :|: V b)
And [Or [N a,P r],0r [N b,P r],0r [N r,P a,P b]l]

tt r@(a :|: b) = [Or[N r, P a, P b]
, Or[P r, N a], Or[P r, N bll
++ tt a ++ tt b

R=(XAY)VZ

Vv

tt :: Ord a =>
tt r@(Not a)

X A XAy vy

\ y4

The following expression must be true

xayyvz &V Xa V V z

tt r@(a :&: b)

tt r@(a

b)

Wff a -> Form (Wff a)

= wffToForm (V r :<->: Not (V a))
<&&> tt a

= wffToForm (V r :<->: V a :&: V b)
<&&> tt a <&&> tt b

= wffToForm (V r :<->: V a :|: V b)
<&&> tt a <&&> tt b

FSM

type Sym = Char
type Trans q = (q, Sym, Q)
data FSM q = FSM [q] [Sym] [Trans ql [q] [q] deriving Show

-— 1ift transitions to [q]
next :: (Eq q) => [Trans q] -> Sym -> [q] -> [q]
next trans x ss = [q' | (q, y, q') < trams, x ==y, q elem ss]

-— apply transitions for symbol = to move the start states
step :: EQ q => FSM q -> Sym -> FSM ¢q
step (FSM gs as ts ss fs) x = FSM gs as ts (next ts x ss) fs

accepts :: (Eq q) => FSM q -> String -> Bool
accepts (FSM gs as ts ss fs) "" = or[q'elem’ss | q <~ fs]
accepts fsm (x : xs) = accepts (step fsm x) xs

trace :: Eq q => FSM q -> [Sym] -> [[q]]
trace (FSM _ _ _ss _) [= [ss]
trace fsmQ(FSM _ _ _ ss _) (x:xs) = ss : trace (step fsm x) xs

A language L is a set of strings in some Alphabet 2

Lc2"

Given an FSM, M the language L(M) is the set of strings accepted by M

A language is regular iff it is of the form L(M)
l.e. If there is some machine that recognises it

We will see that some languages are not regular.

Examples of regular languages:
valid postcodes, strings encoding legal sudoku solutions,
binary strings encoding numbers divisible by 17,
correct dates in the form Tuesday 13 September 2024
for the entire 20th and 21st centuries

language: L C 2 ©
IS regular iff it is of the form L(M)

ne
ne
ne
ne
ne

= -+ -+ = r~-

if A,

anguage {"a"} is regular
anguage {"abc"} is regular
anguage a” is regular
anguage {""} is regular
anguage < Is regular

B € 2 * are both regular

then so is AUB — which we
also write as A|B

operations on languages:

for, A, B C ¥* we have the Boolean operations:
alternation A| B=AUB intersection ANB
difference A ="\ A nothing @ everything T =X~
and some more, concatenation AB, and, iteration A™ .
concatenation is easy: AB ={a++b|a € A,b € B}

se€ A" a€ A
e A* s++a € A*

sceA* a€e A
e A* at+s € A*

because, ""++ajt+tas...++a, = ajttas...+ta,++"" .

A* is defined by two rules:

or, equivalently, by:

simple machines

a single start state

each input sequence
leads to a single state

the answer depends
only on the this state

for some states, yes accepting

for the rest, no

his a black hole state
once in a black hole
We can never escape

omitting the black hole

gives a simpler diagram @ .

still shows all paths > q0 ——(g1 [2
from start to accepting

DFA
single start state

any number
of accepting states

each (state, input) pair
determines next state

ts = [(Q0,a,Q1),(Q1,b,Q1)
, (Q1,¢,Q2),(Q1,d,Q2)]

next :: (Eq q) => [Trans ql -> Sym -> [q] -> [q]
next trans x ss = [q' | (q, y, q') <- trams, x ==y, q elem ss]

next ts a [Q0] = [Q1]
next ts b [Q1] = [Q1] o
next ts ¢ [Q1] = [Q2] Always, at most one state is it
next ts d [Q1] = [Q2]

next ts [] -- black hole

type Sym = Char

type Trans q = (q, Sym, Q)

data FSM q = FSM [q] [Sym] [Trans ql [q] [q]
deriving Show

DFA

isDFA :: Eq q => FSM q -> Bool
isDFA (FSM gs as ts ss fs) =
(length ss == 1)
&&
and[r == q' | (q, a, q') <- ts, r <- gs
, (q, a, r) elem ts]

data EG = QO0|Q11Q2 deriving (Eq,Show)
[a,b,c,d] = "abcd"

eg = FSM gs as ts ss fs @
where a
gqs = [Q0,Q1,Q2]

as = [a,b,c,d]

ts = [(Q0,2,Q1),(Q1,b,Q1),(Q1,c,Q2),(Q1,d,Q2)]
ss = [QO]
fs = [Q2]
trace (FSM _ _ _ss _) [l = [ss]
trace fsm@(FSM _ _ _ ss _) (x:xs) = ss : trace (step fsm x) xs

> trace eg "abbc"

[LQo], [Q1], [Q1], [Q1], [Q2]]
> trace eg "abbcd" Always, at most one state is /it

[[Qo], [Q1], [Q1], [Q1], [Q2], [1]

DFA >

isDFA :: Eq q => FSM q —-> Bool
isDFA (FSM gs as ts ss fs) =
(length ss == 1)
&&
and[r == q' | (g, a, q') <- ts, r <- gs, (g, a, r) elem ts]

KISS — DFA

Deterministic Finite Automaton

Exactly one start state, and
from each state, q,
for each symbol, a,
there is
exactly one transition
from q with label a

How can we understand which
questions are answered by DFA?

18

Two examples

o 1 ./\1
0 .’ binary

0 1 0 numbers

klnput sequence is accepted if it ends with a zero.)

4 1)
0 1 Odd
u binary
8 1 .@ numbers

anut sequence is accepted if it ends with a one. .

-

i Informatics 1

School of Informatics, University of Edinburgh
19

The complement of a DFA regular
language is DFA regular

0 1 1
.‘ Lo : even numbers
0) =0 mod 2
0 1 A
1 L1: odd numbers

OWBo = 1 mod 2
0

i Informatics 1

School of Informatics, University of Edinburgh
20

Three examples

/

-

1

1

0 0 1
—@__1®

0

\

J

Which
binary
numbers
are
accepted?

-

-

o 1 0
—(__ O 1=

1 0

~

1

J

-

o 1 0
—C_ 1 @

-

1 0

nformatics 1

® Inf
' School of Informatics, University of Edinburgh

21

The complement of a DFA regular
language is DFA regular

-

-

o 1 0 1
—@@___ 1=

1 0

~

J

-

o 1 0
—(__OL ®

1 0

~

1

If A C 2" is recognised
by M
then A =2*\ A
IS recognised by
M
where M and M are
identical except that
the accepting states
of M are the non-
accepting states of M
and vice-versa

Informatics 1
School of Informatics, University of Edinburgh

22

divisible by three

- J
4)
0 0 1
—CLC OO guisibies
divisible by three

- 1 O J

L3 ,

' lSn(izgglag;: Isnlormatics, University of Edinburgh

23

The intersection of two DFA regular
languages is DFA regular

v Lo=0mod 3

O Y | Lr=1mod3
l>o-=2mod 3

Informatics 1
School of Informatics, University of Edinburgh

24

The intersection of two DFA regular
languages is DFA regular

4 O 1 [\1)
—@_1 o

0 d|V|S|b_|e by 6
) . divisible by 2

1 0 1 and

0
divisible by 3
—@___ 1 1=

N 1 0 J

Informatics 1
School of Informatics, University of Edinburgh

25

The intersection of two DFA-regular
languages is DFA-regular

. Run both machines in
1] & parallel?
O
0

O Build one machine
that simulates two

S D . e
machines running in
) arallel!
0 1 0 1 P
.’.@ Keep track of the
1 0 state of each
J

machine.

Informatics 1
School of Informatics, University of Edinburgh

26

The intersection of two DFA-regular
languages is DFA-regular

-G

2N
l

01 01 T

@I 0 —
&
1 0

Informatics 1
School of Informatics, University of Edinburgh

27

intersection of
languages

run the two machines in parallel

when a string is in both languages,
both are in an accepting state

28

intersection of Q

1
anguages
run the two machines in parallel ’.’
0

when a string is in both languages,
both are in an accepting state

i
O @

29

intersection of two
regular languages
IS regular

run two
machines
IN
synchrony

The DFA-regular languages A € 2~
form a Boolean Algebra

e Since they are closed under intersection
and complement.

Informatics 1
School of Informatics, University of Edinburgh

31

> accepts eg '"abc"

Given a string we can check whether True
the machine accepts it

> accepts eg "abbd"
True

> accepts eg '"abcd"
False

o
e TS

How can we describe the
strings this machine accepts?

ab*x(c|d)

(al (b(alb)) ((alb) (alb))*

ax | bx

Plus a black hole state

regular expressions
patterns that match strings

any character is a regexp Kleene *, +

e matches itself

if R and S are regexps, so is RS @
* matches - RS TA

a match for R followed by a match for S
if R and S are regexps, so is RIS

* matches
any match for R or S (or both)

if R is a regexp, so is R*

* matches)(

any sequence of 0 or more matches for R izl Ld
Stephen Cole Kleene

The algebra of regular expressions also includes elements & and € 061904

e J matches nothing;

® & = @* matches the empty string

The union of two regular languages is a regular language
The empty language is a regular language
The all-inclusive language is a regular language
The complement of a DFA regular language is a regular language?

Any Boolean combination of DFA regular languages is a DFA regular language

dfa :: Ord q => FSM q -> FSM [q]
dfa (FSM gs as ts ss fs) =
let superss = reach (next ts) as ss
superts = [(qq, a, next ts a qq) | qq <- superss, a <- as]
in
FSM superss as superts [ss]
[qq | qq <- superss, or[g elem fs | q <- qq 1]

reach :: Ord q => (Sym -> [q] -> [ql)
-> [Sym] -> [ql -> [[qll
reach step as ss =
let add gss gqs = if gs elem gss then gss
else foldl add (gs : gss)
[canonical $§ step s gs | s <- as]
in add [] (canonical ss)

dfa :: Ord q => FSM q -> FSM [q]
dfa (FSM gs as ts ss fs) =
let superqs = reach (next ts) as ss
superts = [(qq, a, next ts a qq)
| qq <- superqgs, a <- as]
in FSM superqgs as superts [ss]
[g | qq <- superqgs, or[qelem™fs | q <- qq 1]

