

Computation and Logic DFA

Michael Fourman @mp4man

Survey Monkey Link

If we start from an expression then we can draw an equivalent circuit with:

$$R = (X \wedge Y) \vee Z$$

a wire for each subexpression, a logic gate for each operator, and an input for each variable.

If we start from an expression then we can draw an equivalent circuit with:

$$R = (X \land Y) \lor Z$$

a wire for each subexpression, a logic gate for each operator, and an input for each variable.

Relationships between the values on the wires

Relationships between the values on the wires

$$\mathbf{V} \times \mathbf{x} = \mathbf{V} \times \mathbf{x} \wedge \mathbf{V} y$$

$$\mathbf{V} \times \mathbf{y} \times \mathbf{z} = \mathbf{V} \times \mathbf{x} \vee \mathbf{V} z$$

The following expressions must be true

The following expression must be true

(x \wedge y) \vee z \longleftrightarrow V \times \wedge \vee V z

```
*CL7> [x,y,z] = "xyz"

*CL7> r@(a:|:b) = (V x :&: V y) :|: V z

*CL7> r

V 'x' :&: V 'y' :|: V 'z'

*CL7> a

V 'x' :&: V 'y'

*CL7> b

V 'z'

*CL7> V r :<->: V a :|: V b

V (V 'x' :&: V 'y' :|: V 'z') :<->: V (V 'x' :&: V 'y') :|: V (V 'z')

A

D
```


The following expression must be true

The following expression must be true

$$\mathbf{V} (x \wedge y) \vee z \iff \mathbf{V} \times \wedge \vee \mathbf{V} z$$

FSM

```
type Sym = Char
type Trans q = (q, Sym, q)
data FSM q = FSM [q] [Sym] [Trans q] [q] [q] deriving Show
-- lift transitions to [q]
next :: (Eq q) \Rightarrow [Trans q] \rightarrow Sym \rightarrow [q] \rightarrow [q]
next trans x ss = [q' | (q, y, q') <- trans, x == y, q'elem'ss]
-- apply transitions for symbol x to move the start states
step :: Eq q => FSM q -> Sym -> FSM q
step (FSM qs as ts ss fs) x = FSM qs as ts (next ts x ss) fs
accepts :: (Eq q) => FSM q -> String -> Bool
accepts (FSM qs as ts ss fs) "" = or[ q`elem`ss | q <- fs ]
accepts fsm(x:xs) = accepts(step fsm x) xs
trace :: Eq q => FSM q -> [Sym] -> [[q]]
trace (FSM _ _ _ ss _) [] = [ss]
trace fsm@(FSM _ _ ss _) (x:xs) = ss : trace (step fsm x) xs
```

A language L is a set of strings in some Alphabet Σ

 $L \subseteq \Sigma^*$

Given an FSM, M the language L(M) is the set of strings accepted by M

A language is **regular** iff it is of the form **L(M)** i.e. if there is some machine that recognises it

We will see that some languages are not regular.

Examples of regular languages:

valid postcodes, strings encoding legal sudoku solutions, binary strings encoding numbers divisible by 17, correct dates in the form Tuesday 13 September 2024 for the entire 20th and 21st centuries

language: L ⊆ Σ *

is regular iff it is of the form L(M)

the language $\{"a"\}$ is regular the language $\{"abc"\}$ is regular the language a^* is regular the language $\{""\}$ is regular the language \emptyset is regular

if A, B $\subseteq \Sigma$ * are both regular then so is AUB — which we also write as A|B

operations on languages:

for, $A, B \subseteq \Sigma^*$ we have the Boolean operations:

alternation $A \mid B = A \cup B$ intersection $A \cap B$ difference $\neg A = \Sigma^* \setminus A$ nothing \varnothing everything $\top = \Sigma^*$ and some more, concatenation AB, and, iteration A^* .

concatenation is easy: $AB = \{a + b \mid a \in A, b \in B\}$

 A^* is defined by two rules: $\frac{s \in A^* \quad a \in A}{s++a \in A^*}$

or, equivalently, by: $\frac{s \in A^* \quad a \in A}{a + + s \in A^*}$

because, ""++ a_1 ++ a_2 ...++ a_n = a_1 ++ a_2 ...++ a_n ++"".

simple machines

a single start state

each input sequence leads to a single state

the answer depends only on the this state

for some states, yes

for the rest, no

omitting the black hole gives a simpler diagram

still shows all paths from start to accepting

DFA single start state any number of accepting states

each (state, input) pair determines next state

ts =
$$[(Q0,a,Q1),(Q1,b,Q1)$$

,(Q1,c,Q2),(Q1,d,Q2)]

q0

q1

a

а

```
next :: (Eq q) => [Trans q] -> Sym -> [q] -> [q]
next trans x ss = [ q' | (q, y, q') <- trans, x == y, q`elem`ss ]
next ts a [Q0] = [Q1]
next ts b [Q1] = [Q1]
next ts c [Q1] = [Q2]
next ts d [Q1] = [Q2]
next ts _ _ = [] -- black hole</pre>
Always, at most one state is lit
```

DFA

q0

q1

a

```
data EG = Q0|Q1|Q2 deriving (Eq,Show)
[a,b,c,d] = "abcd"
eg = FSM qs as ts ss fs
                                        q0
                                                   q1
 where
                                              а
   qs = [Q0, Q1, Q2]
   as = [a,b,c,d]
   ts = [(Q0,a,Q1),(Q1,b,Q1),(Q1,c,Q2),(Q1,d,Q2)]
   ss = [00]
   fs = [02]
          (FSM \_ \_ \_ ss \_) [] = [ss]
trace
trace fsm@(FSM _ _ _ ss _) (x:xs) = ss : trace (step fsm x) xs
> trace eg "abbc"
[[Q0],[Q1],[Q1],[Q1],[Q2]]
                                   Always, at most one state is lit
> trace eg "abbcd"
[[Q0], [Q1], [Q1], [Q1], [Q2], []]
```

DFA


```
isDFA :: Eq q => FSM q -> Bool
isDFA (FSM qs as ts ss fs) =
   (length ss == 1)
   &&
   and[ r == q' | (q, a, q') <- ts, r <- qs, (q, a, r)`elem`ts ]</pre>
```

KISS – DFA

Deterministic **F**inite **A**utomaton

Exactly one start state, and from each state, **q**, for each symbol, **a**, there is exactly one transition from **q** with label **a**

How can we understand which questions are answered by DFA?

Two examples

The complement of a DFA regular language is DFA regular

 L_0 : even numbers = 0 mod 2

 L_1 : odd numbers = 1 mod 2

Three examples

Which binary numbers are accepted?

	×2	x2 + 1
mod 3	0	1
0	0	1
1	2	0
2	1	2

The complement of a DFA regular language is DFA regular

If $A \subseteq \Sigma^*$ is recognised by M then $\overline{\mathbf{A}} = \Sigma^* \setminus \mathbf{A}$ is recognised by where $\overline{\mathbf{M}}$ and \mathbf{M} are identical except that the accepting states of $\overline{\mathbf{M}}$ are the nonaccepting states of M and vice-versa

By three or not by three?

divisible by three

not divisible by three

The intersection of two DFA regular languages is DFA regular

$$L_0 = 0 \mod 3$$

$$L_1 = 1 \mod 3$$

$$L_2 = 2 \mod 3$$

The intersection of two DFA regular languages is DFA regular

divisible by 6

and
divisible by 3

The intersection of two DFA-regular languages is DFA-regular

Run both machines in parallel?

Build one machine that simulates two machines running in parallel!

Keep track of the state of each machine.

The intersection of two DFA-regular languages is DFA-regular

intersection of languages

run the two machines in parallel when a string is in both languages, both are in an accepting state

intersection of languages

run the two machines in parallel when a string is in both languages, both are in an accepting state

intersection of two regular languages is regular

run two machines in synchrony

The DFA-regular languages A ⊆ Σ* form a Boolean Algebra

• Since they are closed under intersection and complement.

Given a string we can check whether the machine accepts it

How can we describe the strings this machine accepts?

ab*(c|d)

> accepts eg "abc"
True
> accepts eg "abbd"

True

> accepts eg "abcd"
False

(a|(b(a|b))((a|b)(a|b))*

a*|b*

a* | b*

Plus a black hole state

regular expressions

patterns that match strings

- any character is a regexp
 - matches itself
- if R and S are regexps, so is RS
 - matches a match for R followed by a match for S
- if R and S are regexps, so is RIS
 - matches any match for R or S (or both)
- if R is a regexp, so is R*
 - matches any sequence of 0 or more matches for R
- The algebra of regular expressions also includes elements \varnothing and ϵ
 - Ø matches nothing;
 - $\varepsilon = \emptyset^*$ matches the empty string

Kleene *, +

Stephen Cole Kleene

1909-1994

The union of two regular languages is a regular language

The empty language is a regular language

The all-inclusive language is a regular language

The complement of a DFA regular language is a regular language?

Any Boolean combination of DFA regular languages is a DFA regular language

```
dfa :: Ord q => FSM q -> FSM [q]
dfa (FSM qs as ts ss fs) =
  let superss = reach (next ts) as ss
      superts = [ (qq, a, next ts a qq) | qq <- superss, a <- as ]
  in
  FSM superss as superts [ss]
  [ qq | qq <- superss, or[ q`elem`fs | q <- qq ]]</pre>
```

```
reach :: Ord q => (Sym -> [q] -> [q])
       -> [Sym] -> [q] -> [[q]]
 reach step as ss =
   let add qss qs = if qs`elem`qss then qss
         else foldl add (qs : qss)
               [canonical $ step s qs | s <- as ]
   in add [] (canonical ss)
dfa :: Ord q \Rightarrow FSM q \rightarrow FSM [q]
dfa (FSM qs as ts ss fs) =
  let superqs = reach (next ts) as ss
      superts = [ (qq, a, next ts a qq)
                  | qq <- superqs, a <- as ]</pre>
  in FSM superqs as superts [ss]
     [ qq | qq <- superqs, or [ q'elem'fs | q <- qq ]]
```