HHH B

Computation and Logic
regex and FSM

Michael Fourman
@mp4man

-

Q-
(O b

b
CaQbC @aibgj
a
a

a(baa)*

Oru®)

oL

ab(ab)*

(ab(alb))*

[)

(-0

OO0

alb

_J

nn

IDEA

a machine consists of lights (states)
and buttons (symbols)
some lights are special (final states)
some lights are lit (start states)

when we press a button the lights change according to
some rule

we want to find which sequences of button presses will turn
some accepting state on

IDEA @/HG

when we press a button the lights change according to sor

the rule is simple: we have a finite set of transitions
(we draw these as labelled arrows)

r is on after s is pushed iff
there is some transition (q, s, r)
for which g was on before s was pressed

'Q0Qp Q00
MO - OOOA
wOO O 0O

=> [Trans

)
O
O O
O
O O
O

O

O
O
O

O

O

O
O

~
o’
g
>

n
o

—
Il
n
=

type Sym = Char
type Trans q = (q, Sym, q)
data FSM q = FSM [q] [Sym] [Trans ql [q]l [q] deriving Show

-— lift transitions to [q]
next :: (Eq q) => [Trans q] -> Sym -> [q] —> [q]
next trans x ss = [q' | (q, y, q') <- trans, x == y, q elem’ss]

-— apply transitions for symbol = to move the start states
step :: Eq q => FSM q -> Sym -> FSM q
step (FSM gs as ts ss fs) x = FSM gs as ts (next ts x ss) fs

A machine has

gs a set of states O
as an alphabet of symbols &V
ts a set of transitions
ss aset of starting states @ @
fs asetoffinalstates O O O

Automaton
An NFA is represented formally by a 5-

*a f|n|te set of states

4pl€, , consisting of

. uSe
o \N‘“

| C)f states distinguished as accepting (or final) states .

Automaton
A FSM s represented formally by a 5-tuple, , consisting of

e gs a finite set of states

e as a finite set of symbols

e {s a transition relation - represented as a set of triples
e ss a set of initial (or start) states

e fs a set of accepting (or final) states

type Sym = Char
type Trans q = (q, Sym, Q)
data FSM q = FSM [q] [Sym] [Trans ql [ql] [q] deriving Show

-- lift transitions to [q]
next :: (Eq q) => [Trans q] -> Sym -> [q] -> [ql
next trans x ss = [q' | (q, y, q') < trams, x ==y, q elem’ss]

-— apply transitions for symbol = to move the start states
step :: Eq q => FSM q -> Sym -> FSM q
step (FSM gs as ts ss fs) x = FSM gs as ts (next ts x ss) fs

accepts :: (Eq q) => FSM q -> String -> Bool
accepts (FSM gs as ts ss fs) "" = or[q'elem’ss | q <- fs]
accepts fsm (x : xs) = accepts (step fsm x) xs

trace :: Eq q => FSM q —> [Sym] -> [[q]]
trace (FSM _ _ _ ss _) [] = [ss]
trace fsm@Q(FSM _ _ _ ss _) (x:xs) = ss : trace (step fsm x) xs

Traffic Light Signals

H HH H

RED means RED AND GREEN means AMBER means
‘Stop’. Wait AMBER also you may goon ‘Stop’ at the stop

behind the stop means ‘Stop’. if the way is line. You may go
line on the Do not pass clear. Take on only if the
carriageway through or special care if AMBER appears
start until you intend to after you have
GREEN shows turn left or right crossed the stop
and give way line or are so
to pedestrians close to it that
who are to pull up might

crossing cause an accident

27

logic & computation

(red iff Aor B
amber iff B or D

green iff C

current
A B C D

B C D A
next

current

A B C D
B C D A

next

® ° current
W - o0 R
O © 4
@ G
T l O @
O O A
O «— & G’

& next

30

current

@ O
— O 0 R
O @ A
T l @ G
O ®r
O O A’
O «— & G’

& next

31

Moore machine 1956 Mealy machine 1955

Present State

Previous IPrevious Input Present Present a0 qr | o (7] v
State 0 1 L 0 0 0 1 0 1
0 0 1 1 0 1
q, q a5 0 1 0 0 0 0
q, q, q} 0 1 1 0 0 0
a qQ, q 1 0 0 1 1 0
3 L b

1 0 1 0 1 0
Qy 9 9z 1 1 0 0 0 0
1 1 1 0 1 0

Edward F. Moore 1925-2003 George H. Mealy 1927-2010

. . . A Method for
Gedanken - Experiments on Sequential Machines, 1956 Synthesizing Sequential Circuits 1955
http://people.mokk.bme.hu/~kornai/termeszetes/moore_1956.pdf http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6771467

Finite State Machine concepts proved valuable in language parsing (compilers) and
sequential circuit design

Moore is less

keep It simple

What yes/no questions about inputs
can be answered by a finite deterministic machine?

possible inputs

2* = finite sequences yes/no questions

correspond to

for each input x e >* subsets of 2

a yes/no question Q
gives an answer Q(x)

{xeZ"|Q(x)}c2"

AcC2>* subset
isx e A Question

simple machines

NO outputs

each input sequence
leads to a single state

the answer depends
only on the this state

for some states, yes accepting

for the rest, no

his a black hole state
once in a black hole
We can never escape

omitting the black hole

gives a simpler diagram @ .

still shows all paths > q0 ——(g1 [2
from start to accepting

DFA
single start state

any number
of accepting states

each (state, input) pair
determines next state

ts = [(Q0,a,Q1),(Q1,b,Q1)
, (Q1,¢,Q2),(Q1,d,Q2)]

next :: (Eq q) => [Trans q] -> Sym -> [q] -> [ql
next trans x ss = [q' | (q, y, q') <= trans, x ==y, q elem ss]

next ts a [Q0] = [Q1]
next ts b [Q1] = [Q1] Always, at most one state is /it
next ts c¢ [Q1] = [Q2]
next ts d [Q1] = [Q2]

next ts

[l -- black hole

DFA ol

data EG = Q0|Q1]Q2

deriving (Eq,Show) Ya

[a,b,c,d] = "abcd" (]
eg = FSM gs as ts ss fs Qa’ 06
where

qgs = [Q0,Q1,Q2]

as = [a,b,c,d]

ts = [(Q0,a,Q1),(Q1,b,Q1),(Q1,c,Q2),(Q1,d,Q2)]

ss = [QO]

fs = [Q2]

data EG = QO0|Q11Q2 deriving (Eq,Show)
[a,b,c,d] = "abcd"

eg = FSM gs as ts ss fs @
where a
gqs = [Q0,Q1,Q2]

as = [a,b,c,d]

ts = [(Q0,2,Q1),(Q1,b,Q1),(Q1,c,Q2),(Q1,d,Q2)]
ss = [QO]
fs = [Q2]
trace (FSM _ _ _ss _) [l = [ss]
trace fsm@(FSM _ _ _ ss _) (x:xs) = ss : trace (step fsm x) xs

> trace eg "abbc"

[[Qo], [Q1], [Q1], [Q1], [Q2]]

> trace eg "abbcd"
[LQol, [Q1], [Q1], [Q1],[Q2]1,[]1]

DFA >

isDFA :: Eq q => FSM q —-> Bool
isDFA (FSM gs as ts ss fs) =
(length ss == 1)
&&
and[r == q' | (g, a, q') <- ts, r <- gs, (g, a, r) elem ts]

