INF1a-CL

Syllogisms & Arrow Rule

Aristotle's Categorical Propositions

All plants are fungi Some flowers are not plants Some flowers are not fungi

Is this a valid argument?

Give it as a syllogism, and use Venn diagrams either to show it is valid, or to produce a counterexample.

some c is not b

All plants are fungi
Some flowers are not plants
Some flowers are not fungi

all a is b some c is not a some c is not b

some c is not b

All plants are fungi Some flowers are not plants Some flowers are not fungi

¿counterexample?

all a is b some c is not a some c is not b

every a is b

some c is not b

d	
Ī	
Ġ	
7	
_	
C	

plant	fungus	flower
√	√	√
√	√	×
×	√	√
×	√	×
×	×	×

A counterexample can be given by including things of five different kinds corresponding to the red dets as shown in the table.

We only actually need the third row.

some c is not b

All plants are fungi Some flowers are not plants Some flowers are not fungi

every a is b

A counterexample can be given by including things of five different kinds corresponding to the red dets as shown in the table.

We only actually need the third row.

plant	fungus	flower
√	√	✓
√	√	×
×	√	√
×	√	×
×	×	×

$$\frac{a \models b \quad b \models \neg c}{a \models \neg c} \quad \text{all snakes are reptiles no reptiles have fur} \\ \qquad \vdots \quad \text{no snakes have fur}$$

all humans are mammals no reptiles are mammals
$$a \models b \quad c \models \neg b$$
 \Rightarrow no humans are reptiles $a \models \neg c$

$$\frac{a \models b \quad c \models \neg b}{c \models \neg a} \quad \text{all humans are mammals no reptiles are mammals} \\ \vdots \quad \text{no reptiles are humans}$$

all humans are mammals no mammals are reptiles ... no reptiles are humans
$$\frac{a \models b \quad b \models \neg c}{c \models \neg a}$$

$$a \models b$$
 $a \models \neg b$ $a \not\models \neg b$ $a \not\models b$

$$\frac{m \vDash p \quad s \vDash m}{\text{barbara} \quad s \vDash p}$$

$$\frac{m \vDash \neg p \quad s \vDash m}{\text{celarent} \quad s \vDash \neg p}$$

$$\begin{array}{cccc} \underline{m \not \vdash \neg p & m \vDash s} & \underline{p \vDash \neg m & s} \\ \text{disamis} & \underline{s \not \vdash \neg p} & & \text{festino} & \underline{s \not \vdash p} \end{array}$$

$$\frac{m \vDash p \quad m \not \vDash \neg s}{\text{datisi} \quad s \not \vDash \neg p}$$

$$\underbrace{p \vDash m \quad s \vDash \neg m}_{\text{camestres} \quad s \vDash \neg p}$$

$$\frac{m \vDash \neg p \quad m \not\vDash \neg s}{\text{ferison} \quad s \not\vDash p} \quad \frac{p \vDash \neg m \quad m}{\text{fresison} \quad s \not\vDash p}$$

$$\frac{m \vDash \neg p \quad m \not \vDash \neg s}{\text{ferison} \quad s \not \vDash p} \quad \frac{p \vDash \neg m \quad m \not \vDash \neg s}{\text{fresison} \quad s \not \vDash p}$$

$$\frac{m \vDash p \quad s \not \vDash \neg m}{\text{darii} \quad s \not \vDash \neg p}$$

$$\frac{p \vDash m \quad m \vDash \neg s}{\text{dernes } s \vDash \neg p} \qquad \frac{m \vDash p \quad s \not \vDash \neg m}{\text{darii } s \not \vDash \neg p} \qquad \frac{p \not \vDash \neg m \quad m \vDash s}{\text{dimatis } s \not \vDash \neg p}$$

$$\frac{a \vDash b \quad b \vDash \neg c}{a \vDash \neg c}$$

$$\frac{a \vDash b \quad c \vDash \neg b}{\text{\tiny cesare} \quad a \vDash \neg c}$$

$$a \vDash b \quad c \vDash \neg b$$

$$camestres \quad c \vDash \neg a$$

$$\underline{a \models b \quad b \models \neg c}_{\text{calemes}} \quad c \models \neg a$$

$$\frac{m \vDash \neg p \quad s \vDash m}{s \vDash \neg p}$$

What do these mean?

What do these mean?

$$\models a \lor b$$

$$\neg a \vDash b$$

$$\neg b \vDash a$$

What do these mean?

$$\models a \lor b$$

$$\neg a \models b$$

$$\neg b \vDash a$$

$$\neg a \nvDash b$$
 $\neg b \nvDash a$

 $\not\vDash a \lor b$

every thing is a or b every not a is b every not b is a some thing is neither a nor b some not a is not b some not b is not a

The first rule of boolean algebra

The second rule of boolean logic the first is barbara

$$\frac{\frac{a \models b}{\neg b \models \neg a}}{\frac{\neg \neg a \models \neg \neg b}{a \models b}} \quad \frac{a \models b}{\neg b \models \neg a} \quad \frac{a \models b}{\neg b \models \neg a}$$

contraposition

Contraposition

$$\frac{a \vDash b \quad b \vDash c}{\text{\tiny barbara} \ a \vDash c}$$

$$\frac{b \vDash c \quad a \not\vDash c}{??}$$

$$\frac{a \vDash b \quad a \not\vDash c}{??}$$

What can we deduce in each case?

What does this mean?

$$a \not \vdash c$$

$$a \stackrel{\mathsf{a}}{\models} b$$

$$a \models b$$
 $a \models \neg b$ $a \not\models \neg b$ $a \not\models b$

$$a \not\models \neg b$$

$$a \not\models b$$

$$\underline{a \vDash b \quad b \vDash c}$$
 barbara $a \vDash c$

$$a \vDash b \quad a \not\vDash c$$
 bocardo
$$b \not\vDash c$$

$$a \vDash b \quad b \vDash \neg c$$
celarent $a \vDash \neg c$

$$a \vDash b \quad a \not \vDash \neg c$$
 disamis
$$b \not \vDash \neg c$$

$$a \vDash b \quad a \not \vDash \neg c$$
datisi
$$c \not \vDash \neg b$$

$$c \vDash \neg b \quad a \not\vDash \neg c$$
ferio $a \not\vDash b$

$$a \vDash \neg b \quad a \not \vDash \neg c$$
 ferison $c \not \vDash b$

$$b \vDash \neg c \quad c \not \vDash \neg a$$
fresison $a \not \vDash b$

$$a \vDash b \quad b \vDash \neg c$$
calemes $c \vDash \neg a$

$$a \vDash b \quad c \not ert \lnot a$$
darii $c \not ert \lnot b$

$$s \not\models \neg s$$

$$\frac{s \vDash p \quad s \not \vDash \neg s}{\text{darii } s \not \vDash \neg p}$$

$$\underbrace{p \vDash m \quad s \not \vDash m}_{\text{baroco} \ s \not \vDash p}$$

$$\frac{m \vDash \neg p \quad s \vDash m}{\text{celarent} \quad s \vDash \neg p}$$

$$\begin{array}{cccc} \underline{m \not \vdash \neg p & m \vDash s} & & \underline{p \vDash \neg m & s} \\ \text{disamis} & s \not \vdash \neg p & & \text{festino} & s \not \vdash p \end{array}$$

$$\underbrace{p \vDash \neg m \quad s \vDash m}_{\text{cesare} \quad s \vDash \neg p}$$

$$\frac{m \vDash \neg p \quad s \not\vDash \neg m}{\text{ferio} \quad s \not\vDash p}$$

$$\underbrace{p \vDash m \quad s \vDash \neg m}_{\text{camestres} \quad s \vDash \neg p}$$

$$\frac{m \vDash \neg p \quad m \not\vDash \neg s}{\text{ferison} \quad s \not\vDash p} \quad \frac{p \vDash \neg m \quad m}{\text{fresison} \quad s \not\vDash p}$$

$$\frac{m \vDash \neg p \quad m \not \vDash \neg s}{\text{ferison} \quad s \not \vDash p} \quad \frac{p \vDash \neg m \quad m \not \vDash \neg s}{\text{fresison} \quad s \not \vDash p}$$

$$\frac{m \vDash p \quad s \not \vDash \neg m}{\text{darii} \quad s \not \vDash \neg p}$$

$$\frac{p \vDash m \quad m \vDash \neg s}{\text{dernes } s \vDash \neg p} \qquad \frac{m \vDash p \quad s \not \vDash \neg m}{\text{darli} \quad s \not \vDash \neg p} \qquad \frac{p \not \vDash \neg m \quad m \vDash s}{\text{dimatis } s \not \vDash \neg p}$$

$(A \to B) \land (A \to B) \land (B \to D) \land (C \to D)$

A valuation gives a truth value for each atom

If $X \to Y$ is true and X is true then Y is true

If $X \to Y$ is false and Y is false then X is false

If every arrow points upwards then
if X is true then
every literal up from X is true

implication graph

if Y is false then every X down from Y is false

implication graph

implication graph

implication graph

$$1 + (2 \times 2 + 2 \times 2) \times 2 + 1 = 18$$

1 + 2 + 4 + 4 + 2 + 1 = 114

5 + 13 = 18

