regex Arden’s lemma

® NFA DFA regex
® Arden’s lemma helps us
find a regex for an NFA

Informatics 1
School of Informatics, University of Edinburgh

alb (|
(o)° © (alb)*a
' alb
(el
alb (| |
>‘ T TOT D) (@byatey
C

alb b
SCFED bty
C

b
IO aldalooy
d C

3

Is there a regular expression for every
FSM?

OO E O,

¢ Informatics 1
' School of Informatics, University of Edinburgh

Is there a regular expression for every
FSM?

> G @ ab(cb | d)*

C

¢ Informatics 1
' School of Informatics, University of Edinburgh

Is there a regular expression for every

FSM?

a b

Lo %
L1 %
. e g

Let Li be the language
accepted ifiis the
accepting state

Lo=¢
L1 =Loa
lo=LiblLocC

l>o=Loablec
lo=cablec
lo=ablc

Informatics 1
School of Informatics, University of Edinburgh

Is there a regular expression for every
FSM?

Let Li be the language

a b
L1 = acceptedifiis the
C

accepting state

a b
(L 19 Lo=¢
a b °
> Lo=
C

Informatics 1
School of Informatics, University of Edinburgh

Is there a regular expression for every
FSM?

a b
(oJ WL 1» Li=loallec

a b
L 1D Lo=¢
a b °
Y ORROWBCIVEIRY.

Informatics 1
School of Informatics, University of Edinburgh

Is there a regular expression for every

FSM?
P LizlLeall
1=LoAd 2 C
@ @G =al Libc

a b
L 1D Lo=¢
a b °
> T 1@ L=Lib

¢ Informatics 1
' School of Informatics, University of Edinburgh

9

Is there a regular expression for every

FSM?
a b Li=loallac
(o @ 1» =allibc
c Li=a(bc)*

a b
L 1D Lo=¢
a b °
> T 1@ L=Lib
C

¢ Informatics 1
' School of Informatics, University of Edinburgh

10

Arden’s Lemma

It Rand S are
regular expressions
then the equation

XZR‘XS R >
has a solution X = R S*

It € ¢ L(S) then this solution is unique.

¢ Informatics 1
' School of Informatics, University of Edinburgh
1"

Is there a regular expression for every
FSM?

L1 =Lob °
lo=Lsbl Lia
L3=8|L1b

Informatics 1
School of Informatics, University of Edinburgh

12

Is there a regular expression for every

FSM?
L1 =Lob °
lo=LlsblLia
L3=8|L1b
=cllLobb

Lo=(elLbb)blL2ba

—bllbbbllsba
—bll2(bbblba)

¢ Informatics 1
' School of Informatics, University of Edinburgh

13

Arden’s Lemma

It R and S are regular expressions
then the equation

X=R|XS
has a solution X = R &*
If € ¢ L(S) then this solution is unigue.

lo=blLz(bbblba)
l.=b (bbb lba)*

¢ Informatics 1
' School of Informatics, University of Edinburgh
14

Arden’s Lemma

It Rand S are
regular expressions
then the equation

XZR‘XS R >
has a solution X = R S*

It € ¢ L(S) then this solution is unique.

¢ Informatics 1
' School of Informatics, University of Edinburgh
15

a

L0=L1a|l2b]e x
ohelae a@b)db \ S e
12=L1b|LO0a)*aa

(ab
L1=L0b|L1ba|LOaa b(ba)*bb k) b
L1=L0(b|aa)|L1 ba b(ba)*a

L1 =L0(b|aa) (ba)*

L2=L0bb|L2ab|LOa

L2 =L0 (bb | a) | L2 ab a(ab)*b =ab | aa(ba)*bb
L2 = L0 (bb|a) (ab)*
ab |
LO=¢|LO(b|aa) ba a|LO(bb|a)(ab)*b *
LO=¢|LO((b|aa) (ba) a)|((bb|a)(@b)*b) aa(ba)*a
LO = ((b (ba)* a)| (aa (ba)* @) | (bb (ab)* b) | (a (ab)* b))* aa(ba)*bb
Since b(ba)*bb
a(ab)*aa = aa(ba)*a b(ba)*a
and

b(ba)*bb = bb(ab)*b
these solutions agree :-)

(ab | (aa | b) (ba)* (a| bb))

L ecture 17
NFA DFA regex

Michael Fourman

NFA DFA regex
language — corresponding to NFA, DFA, regex
trace for a string in NFA or DFA

Definition FSM

finite state automaton FSM

states — a set of states
sigma — a set of symbols
delta C (states x sigma x states)

start ¢ states — starting states
accept ¢ states — accepting states

(B)

Definition e-FSM or NFA

finite state automaton FSM
with e-transitions

states — a set of states

sigma — a set of symbols

delta ¢ (states x sigma x states)
eps ¢ (states x states)

start C states — starting states
accept C states — accepting states

Definition DFA

is a finite state automaton
(FSA, without €)

states — a set of states

sigma — a set of symbols

delta C (states x sigma x states)
start ¢ states — starting states
accept ¢ states — accepting states

A deterministic machine has
* no e-transitions
e exactly one starting state
e for each (state, symbol) pair, (g, s)
exactly one transition of the form (q, s, Q)

We can represent a DFA in Haskell
using either our FSM type or our NFA type

For any FSM DFA NFA, with or without epsilon this is the definition

A trace from ¢ to ¢’ consists of

o). S; .
n transitions ¢; — q;11 for 1 <n

with ¢ = g9 and ¢,, = ¢’

Each trace determines a string, o € >*
consisting of the concatenation of all the non-¢ symbols s;.

0=[si|i<n,si75€]

For any FSM DFA NFA, with or without epsilon this is the definition

A trace from ¢ to ¢’ consists of

.. Sq .
n transitions q¢; — ¢q;+1 for i <n

with ¢ = g9 and ¢,, = ¢’

Each trace determines a string, o € X.*
consisting of the concatenation of all the non-¢ symbols s;.

oc=1[s | 1<n, s;#¢]
If ¢ is a starting state and ¢’ is an accepting state we say the

machine accepts o.

When we check whether a machine accepts a string we use various algorithms
but ultimately, this is the definition.

(a) Which of the following strings are accepted by the NFA in the diagram?
(The start state is indicated by an arrow and the accepting state by a double

a

N
border) O T OF 50O
i. abb
ii. abbabbabbaaabb

iii. abbabbaabbabbabb

iv. abbabaabbabbabb [3 marks)]
(b) Write a regular expression for the language accepted by this NFA. [3 marks]
(c) Draw a DFA that accepts the same language. Label the states of your DFA
to make clear their relationship to the states of the original NFA. [10 marks]
(d) For each of the following regular expressions, draw a non-deterministic finite
state machine that accepts the language described by the regular expression.
i a%y
i (2°[y)
[9 marks]

ii. (z*y)*

5. Each diagram shows an FSM. In each case give a regular expression for the
language accepted by the FSM, make a mark in the check box against each
string that it accepts (and no mark against those strings it does not accept),
make a mark in the DFA check box if it is deterministic, and draw an equivalent

DFA if it is not.
()
b a,t; a
@ -
>‘/ 0o —2 ‘[’/1 \]\

N N\
b

oY)

2

b N
(b) / a,b

N Y
>\ o J—(1)
__/ a \\;//

aab
aba [
bab [
aaa [J
bbb [J
DFAO

aab
aba [
bab [
aaa [J
bbb [J
DFAO

aab [J
aba O
bab [J
aaa
bbb [
DFAO

aab [J
aba
bab [
aaa [J
bbb [
DFAO

aab
aba [J
bab [J
aaa [J
bbb [
DFAO

regex:

regex:

regex:

regex:

regex:

Page 6 of 6

(4 marks]

[4 marks]

[4 marks]

[4 marks]

[4 marks]

