
Needles in haystacks

text
music

pictures

Monday, 28 November 11



text

• Google index

• for every word a list of documents and counts

• Google pagerank

• deciding which documents are most important

• efficiency – distributed algorithms

• building tables

• retrieving documents

Monday, 28 November 11



sounds

• no words

Monday, 28 November 11



Monday, 28 November 11



Monday, 28 November 11



Monday, 28 November 11



Monday, 28 November 11



Munros – isolated peaks

Monday, 28 November 11



Monday, 28 November 11



guideline suggests that each fingerprint hash is calculated 
using audio samples near a corresponding point in time, so 
that distant events do not affect the hash.  The translation-
invariant aspect means that fingerprint hashes derived from 
corresponding matching content are reproducible 
independent of position within an audio file, as long as the 
temporal locality containing the data from which the hash 
is computed is contained within the file.  This makes sense, 
as an unknown sample could come from any portion of the 
original audio track.  Robustness means that hashes 
generated from the original clean database track should be 
reproducible from a degraded copy of the audio.  
Furthermore, the fingerprint tokens should have sufficiently 
high entropy in order to minimize the probability of false 
token matches at non-corresponding locations between the 
unknown sample and tracks within the database.  
Insufficient entropy leads to excessive and spurious 
matches at non-corresponding locations, requiring more 
processing power to cull the results, and too much entropy 
usually leads to fragility and non-reproducibility of 
fingerprint tokens in the presence of noise and distortion. 
 
There are 3 main components, presented in the next 
sections. 

2.1 Robust Constellations 
In order to address the problem of robust identification in 
the presence of highly significant noise and distortion, we 
experimented with a variety of candidate features that could 
survive GSM encoding in the presence of noise.  We settled 
on spectrogram peaks, due to their robustness in the 
presence of noise and approximate linear superposability 
[1].  A time-frequency point is a candidate peak if it has a 
higher energy content than all its neighbors in a region 
centered around the point.  Candidate peaks are chosen 
according to a density criterion in order to assure that the 
time-frequency strip for the audio file has reasonably 
uniform coverage.  The peaks in each time-frequency 
locality are also chosen according amplitude, with the 
justification that the highest amplitude peaks are most 
likely to survive the distortions listed above. 
 
Thus, a complicated spectrogram, as illustrated in Figure 
1A may be reduced to a sparse set of coordinates, as 
illustrated in Figure 1B.  Notice that at this point the 
amplitude component has been eliminated.  This reduction 
has the advantage of being fairly insensitive to EQ, as 

Monday, 28 November 11



aggregate 64-bit struct, 32 bits for the hash and 32 bits for 
the time offset and track ID.  To facilitate fast processing, 
the 64-bit structs are sorted according to hash token value. 
 
The number of hashes per second of audio recording being 
processed is approximately equal to the density of 
constellation points per second times the fan-out factor into 
the target zone.  For example, if each constellation point is 
taken to be an anchor point, and if the target zone has a fan-
out of size F=10, then the number of hashes is 
approximately equal to F=10 times the number of 
constellation points extracted from the file.  By limiting the 
number of points chosen in each target zone, we seek to 
limit the combinatorial explosion of pairs.  The fan-out 
factor leads directly to a cost factor in terms of storage 
space. 
 
By forming pairs instead of searching for matches against 
individual constellation points we gain a tremendous 
acceleration in the search process.  For example, if each 
frequency component is 10 bits, and the �t component is 
also 10 bits, then matching a pair of points yields 30 bits of 
information, versus only 10 for a single point.  Then the 
specificity of the hash would be about a million times 
greater, due to the 20 extra bits, and thus the search speed 
for a single hash token is similarly accelerated.  On the 
other hand, due to the combinatorial generation of hashes, 
assuming symmetric density and fan-out for both database 
and sample hash generation, there are F times as many 
token combinations in the unknown sample to search for, 
and F times as many tokens in the database, thus the total 

speedup is a factor of about 1000000/F2, or about 10000, 
over token searches based on single constellation points.   
 
Note that the combinatorial hashing squares the probability 
of point survival, i.e. if p is the probability of a spectrogram 
peak surviving the journey from the original source 
material to the captured sample recording, then the 
probability of a hash from a pair of points surviving is 
approximately p2.  This reduction in hash survivability is a 
tradeoff against the tremendous amount of speedup 
provided.   The reduced probability of individual hash 
survival is mitigated by the combinatorial generation of a 
greater number of hashes than original constellation points.  
For example, if F=10, then the probability of at least one 
hash surviving for a given anchor point would be the joint 
probability of the anchor point and at least one target point 
in its target zone surviving.  If we simplistically assume IID 
probability p of survival for all points involved, then the 
probability of at least one hash surviving per anchor point 
is  p*[1-(1-p)F].  For reasonably large values of F, e.g. 
F>10, and reasonable values of p, e.g. p>0.1, we have 
approximately  

p � p*[1-(1-p)F] 
so we are actually not much worse off than before. 
 
We see that by using combinatorial hashing, we have 
traded off approximately 10 times the storage space for 
approximately 10000 times improvement in speed, and a 
small loss in probability of signal detection. 
 

aggregate 64-bit struct, 32 bits for the hash and 32 bits for 
the time offset and track ID.  To facilitate fast processing, 
the 64-bit structs are sorted according to hash token value. 
 
The number of hashes per second of audio recording being 
processed is approximately equal to the density of 
constellation points per second times the fan-out factor into 
the target zone.  For example, if each constellation point is 
taken to be an anchor point, and if the target zone has a fan-
out of size F=10, then the number of hashes is 
approximately equal to F=10 times the number of 
constellation points extracted from the file.  By limiting the 
number of points chosen in each target zone, we seek to 
limit the combinatorial explosion of pairs.  The fan-out 
factor leads directly to a cost factor in terms of storage 
space. 
 
By forming pairs instead of searching for matches against 
individual constellation points we gain a tremendous 
acceleration in the search process.  For example, if each 
frequency component is 10 bits, and the �t component is 
also 10 bits, then matching a pair of points yields 30 bits of 
information, versus only 10 for a single point.  Then the 
specificity of the hash would be about a million times 
greater, due to the 20 extra bits, and thus the search speed 
for a single hash token is similarly accelerated.  On the 
other hand, due to the combinatorial generation of hashes, 
assuming symmetric density and fan-out for both database 
and sample hash generation, there are F times as many 
token combinations in the unknown sample to search for, 
and F times as many tokens in the database, thus the total 

speedup is a factor of about 1000000/F2, or about 10000, 
over token searches based on single constellation points.   
 
Note that the combinatorial hashing squares the probability 
of point survival, i.e. if p is the probability of a spectrogram 
peak surviving the journey from the original source 
material to the captured sample recording, then the 
probability of a hash from a pair of points surviving is 
approximately p2.  This reduction in hash survivability is a 
tradeoff against the tremendous amount of speedup 
provided.   The reduced probability of individual hash 
survival is mitigated by the combinatorial generation of a 
greater number of hashes than original constellation points.  
For example, if F=10, then the probability of at least one 
hash surviving for a given anchor point would be the joint 
probability of the anchor point and at least one target point 
in its target zone surviving.  If we simplistically assume IID 
probability p of survival for all points involved, then the 
probability of at least one hash surviving per anchor point 
is  p*[1-(1-p)F].  For reasonably large values of F, e.g. 
F>10, and reasonable values of p, e.g. p>0.1, we have 
approximately  

p � p*[1-(1-p)F] 
so we are actually not much worse off than before. 
 
We see that by using combinatorial hashing, we have 
traded off approximately 10 times the storage space for 
approximately 10000 times improvement in speed, and a 
small loss in probability of signal detection. 
 

Monday, 28 November 11



aggregate 64-bit struct, 32 bits for the hash and 32 bits for 
the time offset and track ID.  To facilitate fast processing, 
the 64-bit structs are sorted according to hash token value. 
 
The number of hashes per second of audio recording being 
processed is approximately equal to the density of 
constellation points per second times the fan-out factor into 
the target zone.  For example, if each constellation point is 
taken to be an anchor point, and if the target zone has a fan-
out of size F=10, then the number of hashes is 
approximately equal to F=10 times the number of 
constellation points extracted from the file.  By limiting the 
number of points chosen in each target zone, we seek to 
limit the combinatorial explosion of pairs.  The fan-out 
factor leads directly to a cost factor in terms of storage 
space. 
 
By forming pairs instead of searching for matches against 
individual constellation points we gain a tremendous 
acceleration in the search process.  For example, if each 
frequency component is 10 bits, and the �t component is 
also 10 bits, then matching a pair of points yields 30 bits of 
information, versus only 10 for a single point.  Then the 
specificity of the hash would be about a million times 
greater, due to the 20 extra bits, and thus the search speed 
for a single hash token is similarly accelerated.  On the 
other hand, due to the combinatorial generation of hashes, 
assuming symmetric density and fan-out for both database 
and sample hash generation, there are F times as many 
token combinations in the unknown sample to search for, 
and F times as many tokens in the database, thus the total 

speedup is a factor of about 1000000/F2, or about 10000, 
over token searches based on single constellation points.   
 
Note that the combinatorial hashing squares the probability 
of point survival, i.e. if p is the probability of a spectrogram 
peak surviving the journey from the original source 
material to the captured sample recording, then the 
probability of a hash from a pair of points surviving is 
approximately p2.  This reduction in hash survivability is a 
tradeoff against the tremendous amount of speedup 
provided.   The reduced probability of individual hash 
survival is mitigated by the combinatorial generation of a 
greater number of hashes than original constellation points.  
For example, if F=10, then the probability of at least one 
hash surviving for a given anchor point would be the joint 
probability of the anchor point and at least one target point 
in its target zone surviving.  If we simplistically assume IID 
probability p of survival for all points involved, then the 
probability of at least one hash surviving per anchor point 
is  p*[1-(1-p)F].  For reasonably large values of F, e.g. 
F>10, and reasonable values of p, e.g. p>0.1, we have 
approximately  

p � p*[1-(1-p)F] 
so we are actually not much worse off than before. 
 
We see that by using combinatorial hashing, we have 
traded off approximately 10 times the storage space for 
approximately 10000 times improvement in speed, and a 
small loss in probability of signal detection. 
 

aggregate 64-bit struct, 32 bits for the hash and 32 bits for 
the time offset and track ID.  To facilitate fast processing, 
the 64-bit structs are sorted according to hash token value. 
 
The number of hashes per second of audio recording being 
processed is approximately equal to the density of 
constellation points per second times the fan-out factor into 
the target zone.  For example, if each constellation point is 
taken to be an anchor point, and if the target zone has a fan-
out of size F=10, then the number of hashes is 
approximately equal to F=10 times the number of 
constellation points extracted from the file.  By limiting the 
number of points chosen in each target zone, we seek to 
limit the combinatorial explosion of pairs.  The fan-out 
factor leads directly to a cost factor in terms of storage 
space. 
 
By forming pairs instead of searching for matches against 
individual constellation points we gain a tremendous 
acceleration in the search process.  For example, if each 
frequency component is 10 bits, and the �t component is 
also 10 bits, then matching a pair of points yields 30 bits of 
information, versus only 10 for a single point.  Then the 
specificity of the hash would be about a million times 
greater, due to the 20 extra bits, and thus the search speed 
for a single hash token is similarly accelerated.  On the 
other hand, due to the combinatorial generation of hashes, 
assuming symmetric density and fan-out for both database 
and sample hash generation, there are F times as many 
token combinations in the unknown sample to search for, 
and F times as many tokens in the database, thus the total 

speedup is a factor of about 1000000/F2, or about 10000, 
over token searches based on single constellation points.   
 
Note that the combinatorial hashing squares the probability 
of point survival, i.e. if p is the probability of a spectrogram 
peak surviving the journey from the original source 
material to the captured sample recording, then the 
probability of a hash from a pair of points surviving is 
approximately p2.  This reduction in hash survivability is a 
tradeoff against the tremendous amount of speedup 
provided.   The reduced probability of individual hash 
survival is mitigated by the combinatorial generation of a 
greater number of hashes than original constellation points.  
For example, if F=10, then the probability of at least one 
hash surviving for a given anchor point would be the joint 
probability of the anchor point and at least one target point 
in its target zone surviving.  If we simplistically assume IID 
probability p of survival for all points involved, then the 
probability of at least one hash surviving per anchor point 
is  p*[1-(1-p)F].  For reasonably large values of F, e.g. 
F>10, and reasonable values of p, e.g. p>0.1, we have 
approximately  

p � p*[1-(1-p)F] 
so we are actually not much worse off than before. 
 
We see that by using combinatorial hashing, we have 
traded off approximately 10 times the storage space for 
approximately 10000 times improvement in speed, and a 
small loss in probability of signal detection. 
 

Monday, 28 November 11



generally a peak in the spectrum is still a peak with the 
same coordinates in a filtered spectrum (assuming that the 
derivative of the filter transfer function is reasonably 
small9peaks in the vicinity of a sharp transition in the 
transfer function are slightly frequency-shifted).  We term 
the sparse coordinate lists ?constellation maps@ since the 
coordinate scatter plots often resemble a star field. 
 
The pattern of dots should be the same for matching 
segments of audio.  If you put the constellation map of a 
database song on a strip chart, and the constellation map of 
a short matching audio sample of a few seconds length on a 
transparent piece of plastic, then slide the latter over the 
former, at some point a significant number of points will 
coincide when the proper time offset is located and the two 
constellation maps are aligned in register. 
 
The number of matching points will be significant in the 
presence of spurious peaks injected due to noise, as peak 
positions are relatively independent; further, the number of 
matches can also be significant even if many of the correct 
points have been deleted.  Registration of constellation 
maps is thus a powerful way of matching in the presence of 
noise and/or deletion of features.  This procedure reduces 
the search problem to a kind of ?astronavigation,@ in which 
a small patch of time-frequency constellation points must 
be quickly located within a large universe of points in a 
strip-chart universe with dimensions of bandlimited 
frequency versus nearly a billion seconds in the database. 
 

Yang also considered the use of spectrogram peaks, but 
employed them in a different way [10]. 

2.2 Fast Combinatorial Hashing 
Finding the correct registration offset directly from 
constellation maps can be rather slow, due to raw 
constellation points having low entropy.  For example, a 
1024-bin frequency axis yields only at most 10 bits of 
frequency data per peak.  We have developed a fast way of 
indexing constellation maps. 
 
Fingerprint hashes are formed from the constellation map, 
in which pairs of time-frequency points are combinatorially 
associated.  Anchor points are chosen, each anchor point 
having a target zone associated with it.  Each anchor point 
is sequentially paired with points within its target zone, 
each pair yielding two frequency components plus the time 
difference between the points (Figure 1C and 1D).  These 
hashes are quite reproducible, even in the presence of noise 
and voice codec compression.  Furthermore, each hash can 
be packed into a 32-bit unsigned integer.  Each hash is also 
associated with the time offset from the beginning of the 
respective file to its anchor point, though the absolute time 
is not a part of the hash itself. 
 
To create a database index, the above operation is carried 
out on each track in a database to generate a corresponding 
list of hashes and their associated offset times.  Track IDs 
may also be appended to the small data structs, yielding an 

generally a peak in the spectrum is still a peak with the 
same coordinates in a filtered spectrum (assuming that the 
derivative of the filter transfer function is reasonably 
small9peaks in the vicinity of a sharp transition in the 
transfer function are slightly frequency-shifted).  We term 
the sparse coordinate lists ?constellation maps@ since the 
coordinate scatter plots often resemble a star field. 
 
The pattern of dots should be the same for matching 
segments of audio.  If you put the constellation map of a 
database song on a strip chart, and the constellation map of 
a short matching audio sample of a few seconds length on a 
transparent piece of plastic, then slide the latter over the 
former, at some point a significant number of points will 
coincide when the proper time offset is located and the two 
constellation maps are aligned in register. 
 
The number of matching points will be significant in the 
presence of spurious peaks injected due to noise, as peak 
positions are relatively independent; further, the number of 
matches can also be significant even if many of the correct 
points have been deleted.  Registration of constellation 
maps is thus a powerful way of matching in the presence of 
noise and/or deletion of features.  This procedure reduces 
the search problem to a kind of ?astronavigation,@ in which 
a small patch of time-frequency constellation points must 
be quickly located within a large universe of points in a 
strip-chart universe with dimensions of bandlimited 
frequency versus nearly a billion seconds in the database. 
 

Yang also considered the use of spectrogram peaks, but 
employed them in a different way [10]. 

2.2 Fast Combinatorial Hashing 
Finding the correct registration offset directly from 
constellation maps can be rather slow, due to raw 
constellation points having low entropy.  For example, a 
1024-bin frequency axis yields only at most 10 bits of 
frequency data per peak.  We have developed a fast way of 
indexing constellation maps. 
 
Fingerprint hashes are formed from the constellation map, 
in which pairs of time-frequency points are combinatorially 
associated.  Anchor points are chosen, each anchor point 
having a target zone associated with it.  Each anchor point 
is sequentially paired with points within its target zone, 
each pair yielding two frequency components plus the time 
difference between the points (Figure 1C and 1D).  These 
hashes are quite reproducible, even in the presence of noise 
and voice codec compression.  Furthermore, each hash can 
be packed into a 32-bit unsigned integer.  Each hash is also 
associated with the time offset from the beginning of the 
respective file to its anchor point, though the absolute time 
is not a part of the hash itself. 
 
To create a database index, the above operation is carried 
out on each track in a database to generate a corresponding 
list of hashes and their associated offset times.  Track IDs 
may also be appended to the small data structs, yielding an 

Monday, 28 November 11



finding lines in 
images

pictures

Monday, 28 November 11



Monday, 28 November 11



Monday, 28 November 11



Monday, 28 November 11



Monday, 28 November 11



Monday, 28 November 11



Monday, 28 November 11



Monday, 28 November 11



Monday, 28 November 11



Monday, 28 November 11



finding blood cells in 
images

finding sub-atomic 
particles in images

Monday, 28 November 11



needles in haystacks

• Find features and create an index pointing 
to the documents that have the relevant 
features.      

Monday, 28 November 11


