
Regular Expressions

• using REs to find patterns

• implementing REs using finite state
automata

Sunday, 4 December 11

REs and FSAs

• Regular expressions can be viewed as a
textual way of specifying the structure of
finite-state automata

• Finite-state automata are a way of
implementing regular expressions

Sunday, 4 December 11

Regular expressions
• A formal language for specifying text strings
• How can we search for any of these?
woodchuck
woodchucks
Woodchuck
Woodchucks

Sunday, 4 December 11

Regular Expressions for
Textual Searches

Who does it?

Everybody:
• Web search engines, CGI scripts
• Information retrieval
• Word processing (Emacs, vi, MSWord)
• Linux tools (sed, awk, grep)
• Computation of frequencies from corpora
• Perl

Sunday, 4 December 11

http://xkcd.com/

Sunday, 4 December 11

http://xkcd.com
http://xkcd.com

Regular Expression

• Regular expression: formula in algebraic
notation for specifying a set of strings

• String: any sequence of alphanumeric characters

– letters, numbers, spaces, tabs, punctuation marks

• Regular expression search
–pattern: specifying the set of strings we want to search

for

–corpus: the texts we want to search through

Sunday, 4 December 11

Basic Regular Expression Patterns

• Case sensitive: d is not the same as D
• Disjunctions: [dD] [0123456789]
• Ranges: [0-9] [A-Z]
• Negations: [^Ss] (only when ^ occurs immediately after [)

• Optional characters: ? and *
• Wild : .
• Anchors: ^ and $, also \b and \B
• Disjunction, grouping, and precedence: | (pipe)

Sunday, 4 December 11

RE Match (single characters) Example Patterns Matched

[^A-Z]! not an uppercase letter “Oyfn pripetchik”

[^Ss] ! neither ‘S’ nor ‘s’ “I have no exquisite reason for’t”

[^\.] ! not a period “our resident Djinn”

[e/] ! either ‘e’ or ‘^’ “look up ˆ now”

a^b ! the pattern ‘a^b’ “look up aˆb now”

^T T at the beginning of a line “The Dow Jones closed up one”

Caret for negation, ^ , or anchor

Sunday, 4 December 11

Optionality and Counters
RE Match Example Patterns Matched
woodchucks?! woodchuck or woodchucks “The woodchuck hid”

colou?r !! color or colour “comes in three colours”

(he){3} exactly 3 “he”s “and he said hehehe.”

? zero or one occurrences of previous char or expression
* zero or more occurrences of previous char or expression
+ one or more occurrences of previous char or expression
{n} exactly n occurrences of previous char or expression
{n, m} between n to m occurrences
{n, } at least n occurrences

Sunday, 4 December 11

Wild card ‘ .’

RE Match Example Patterns Matched

beg.n! ! ! any char between beg and n begin, beg’n, begun
big.*dog find lines where big and the big dog bit the little
 dog occur the big black dog bit the

Sunday, 4 December 11

Operator Precedence Hierarchy

1.
 Parenthesis

 ()
2.
 Counters

 * + ? { }
3.
 Sequences and Anchors
 the ^my end$
4.
 Disjunction

 |

Examples:

 /moo+/

 /try|ies/

 /and|or/

Sunday, 4 December 11

10/17/11
Sunday, 4 December 11

10/17/11

Example
• Find all instances of the word “the” in a text.

Sunday, 4 December 11

10/17/11

Example
• Find all instances of the word “the” in a text.
 /the/

Sunday, 4 December 11

10/17/11

Example
• Find all instances of the word “the” in a text.
 /the/

Misses capitalized examples

Sunday, 4 December 11

10/17/11

Example
• Find all instances of the word “the” in a text.
 /the/

Misses capitalized examples

 /[tT]he/

Sunday, 4 December 11

10/17/11

Example
• Find all instances of the word “the” in a text.
 /the/

Misses capitalized examples

 /[tT]he/

Finds other or theology

Sunday, 4 December 11

10/17/11

Example
• Find all instances of the word “the” in a text.
 /the/

Misses capitalized examples

 /[tT]he/

Finds other or theology

 /\b[tT]he\b/

Sunday, 4 December 11

10/17/11

Example
• Find all instances of the word “the” in a text.
 /the/

Misses capitalized examples

 /[tT]he/

Finds other or theology

 /\b[tT]he\b/

 /[^a-zA-Z][tT]he[^a-zA-Z]/

Sunday, 4 December 11

10/17/11

Example
• Find all instances of the word “the” in a text.
 /the/

Misses capitalized examples

 /[tT]he/

Finds other or theology

 /\b[tT]he\b/

 /[^a-zA-Z][tT]he[^a-zA-Z]/
Misses sentence-initial “the”

Sunday, 4 December 11

10/17/11

Example
• Find all instances of the word “the” in a text.
 /the/

Misses capitalized examples

 /[tT]he/

Finds other or theology

 /\b[tT]he\b/

 /[^a-zA-Z][tT]he[^a-zA-Z]/
Misses sentence-initial “the”

 /(^|[^a-zA-Z])[tT]he[^a-zA-Z]/

Sunday, 4 December 11

Errors
• The process we just went through was

based on fixing two kinds of errors
Matching strings that we should not have

matched (there, then, other)
False positives (Type I)

Not matching things that we should have
matched (The)
False negatives (Type II)

Sunday, 4 December 11

A more complex example

Write a RE that will match “any PC with more than
500MHz and 32 Gb of disk space for less than $1000”.

• First a RE for prices
/$[0-9]+/ # whole dollars
/$[0-9]+\.[0-9][0-9]/ # dollars and cents
/$[0-9]+(\.[0-9][0-9])?/ #cents optional
/\b$[0-9]+(\.[0-9][0-9])?\b/ #word boundaries

Sunday, 4 December 11

A more complex example

Write a RE that will match “any PC with more than
500MHz and 32 Gb of disk space for less than $1000”.

• First a RE for prices
/$[0-9]+/ # whole dollars
/$[0-9]+\.[0-9][0-9]/ # dollars and cents
/$[0-9]+(\.[0-9][0-9])?/ #cents optional
/\b$[0-9]+(\.[0-9][0-9])?\b/ #word boundaries

Sunday, 4 December 11

Continued
• Specifications for processor speed

/\b[0-9]+ *(MHz|[Mm]egahertz|Ghz|[Gg]igahertz)\b/

• Memory size
/\b[0-9]+ *(Mb|[Mm]egabytes?)\b/
/\b[0-9](\.[0-9]+) *(Gb|[Gg]igabytes?)\b/

• Vendors
/\b(Win(95|98|NT|dows *(NT|95|98|2000)?))\b/
/\b(Mac|Macintosh|Apple)\b/

Sunday, 4 December 11

15

Substitutions and Memory
• Substitutions: s/regexp/pattern/)

• Memory (\1, \2, etc. refer back to found matches) e.g.,
Put angle brackets around all integers in text

 the 39 students ==> the <39> students

s/color/colour/

s/([0-9]+)/<\1>/

Sunday, 4 December 11

Using Backslash

RE Match Example Patterns Matched
* ! an asterisk “*” “K*A*P*L*A*N”

\. ! a period “.” “Dr. Livingston, I presume”
\? ! a question mark “Would you light my candle?”
\n ! a newline

\t ! a tab

Sunday, 4 December 11

Some Useful Aliases

RE Expansion Match Example Patterns
\d [0-9] any digit Party of 5
\D [ˆ0-9] any non-digit 99p
\w [a-zA-Z0-9_] any alphanumeric
 or underscore 99p
\W [ˆ\w] a non-alphanumeric !!!!
\s [\r\t\n\f] whitespace (sp, tab)
\S [ˆ\s] Non-whitespace in Concord

Sunday, 4 December 11

Substitutions and Memory
• Substitutions: s/regexp/pattern/)

• Memory (\1, \2, etc. refer back to found matches) e.g.,
Put angle brackets around all integers in text

 the 39 students ==> the <39> students

s/color/colour/

s/([0-9]+)/<\1>/

Sunday, 4 December 11

Example

Swap first two words of line

s/(\w+) +(\w+)/\2 \1/

% perl -de 42
DB<1> $s = “DOES HE LIKE BEER”;
DB<2> print $s;
DOES HE LIKE BEER
DB<3> $s =~ s/(\w+) +(\w+)/\2 \1/;
DB<4> print $s;
HE DOES LIKE BEER

Sunday, 4 December 11

Finite State Automata &
Regular Expressions

• Regular expressions can be viewed as a textual
way of specifying the structure of finite-state
automata.
• FSAs and their probabilistic relatives are at the

core of much of what we’ll do this quarter

Sunday, 4 December 11

FSAs as Graphs
• Let’s start with the sheep language

/baa+!/

Sunday, 4 December 11

FSAs as Graphs

 baa!
 baaa!
 baaaa!
 baaaaa!

 ...

• Let’s start with the sheep language

/baa+!/

Sunday, 4 December 11

Sheep FSA
• We can say the following things about this machine

 It has 5 states
b, a, and ! are in its alphabet

q0 is the start state

q4 is an accept state

 It has 5 transitions

Sunday, 4 December 11

10/17/11 24

More Formally

• You can specify an FSA by enumerating the
following things.
The set of states: Q
A finite alphabet: Σ
A start state
A set of accept/final states
A transition function that maps QxΣ to Q

Sunday, 4 December 11

10/17/11 25

Yet Another View

• The guts of FSAs can
be represented as
tables

b a ! e
0 1
1 2
2 2,3
3 4

4

Sunday, 4 December 11

10/17/11 25

Yet Another View

• The guts of FSAs can
be represented as
tables

b a ! e
0 1
1 2
2 2,3
3 4

4

If you’re in state 1
and you’re looking at
an a, go to state 2

Sunday, 4 December 11

Recognition
• Recognition is the process of determining if a

string should be accepted by a machine
• Or… it’s the process of determining if a string is in

the language we’re defining with the machine
• Or… it’s the process of determining if a regular

expression matches a string
• Those all amount the same thing in the end

Sunday, 4 December 11

Recognition

• Traditionally, (Turing’s notion) this process is depicted
with a tape.

Sunday, 4 December 11

10/17/11 28

Recognition

• Start in the start state
• Examine the current input
• Consult the table
• Go to a new state and update the tape
pointer.
• Until you run out of tape.

Sunday, 4 December 11

10/17/11

Tracing a Rejection

a b a ! b

q0

Slide from Dorr/Monz
Sunday, 4 December 11

10/17/11

Tracing a Rejection

a b a ! b

q0

0 1 2 3 4

b a a !a

Slide from Dorr/Monz
Sunday, 4 December 11

10/17/11

Tracing a Rejection

a b a ! b

q0

0 1 2 3 4

b a a !a

REJECT

Slide from Dorr/Monz
Sunday, 4 December 11

10/17/11

Tracing an Accept

b a a a

q0 q1 q2 q3 q3 q4

!

Slide from Dorr/Monz
Sunday, 4 December 11

10/17/11

Tracing an Accept

b a a a

q0 q1 q2 q3 q3 q4

!

0 1 2 3 4

b a a !a

Slide from Dorr/Monz
Sunday, 4 December 11

10/17/11

Tracing an Accept

b a a a

q0 q1 q2 q3 q3 q4

!

0 1 2 3 4

b a a !a

ACCEPT

Slide from Dorr/Monz
Sunday, 4 December 11

Regular expression search

http://www.inf.ed.ac.uk/teaching/courses/il1/2010/labs/2010-10-07/regex.xml

Search for the following expressions

– Alice
– brillig
– m.m
– c..c
– [A-Z][A-Z]+
– J|j
– (J|j)
– \(.*\)
– l.*l
– l.*?l
– l.+l

31

http://www.learn-javascript-tutorial.com/RegularExpressions.cfm#h1.2

Sunday, 4 December 11
What does . stand for? (any character)
* is for repetition - zero or more times
[aeiou] is for any vowel
(i|o) is for either i or o
\(.*\)

These are called regular expressions
We can construct finite state machines to recognise regular expressions.

http://codesearch.google.com
http://codesearch.google.com
http://codesearch.google.com
http://codesearch.google.com
http://www.learn-javascript-tutorial.com/RegularExpressions.cfm#
http://www.learn-javascript-tutorial.com/RegularExpressions.cfm#

More Examples
Finite State Automata and Regular Expressions

Sunday, 4 December 11

rara

rr a a

r r

S

Sunday, 4 December 11

Rara is similar

But rarr should send us back to look for the first a

ra(ra)*

r a

r r

S

Sunday, 4 December 11

ra(ra)*

suss this?

s[] su susss u s

us

[] s su sus •
s s s sus s

u [] su [] •
. [] [] [] []

in
pu

t

state
FSAs can be represented as:

- graphs
- transition tables

If you’re in state s and
you’re looking at a u, go to
state su

Sunday, 4 December 11

Now we try to write finite state machines that will search for regular expressions.

Start with something simple

SUSS

The path from start to success is obvious.

What to do when you find a wrong letter part-way through is harder.

After s, if we find another s we don’t go back to the beginning to look for an s - we just
found one

So we go back to the state where we’re looking for a u

Similarly for susu – we go back to the state looking for the second s

f

(flip)|(flop)

fl[] fl(i|o)

f l
p

o

f fl[] fl(i|o)
f l i

p
S

Sunday, 4 December 11

 fl(i|o)p

f fl[fl(i|
f l i p

o

S

Sunday, 4 December 11

• any character is a regexp

• matches itself

• if R and S are regexps, so is RS

• matches
a match for R followed by a match for S

• if R and S are regexps, so is R|S

• matches
any match for R or S (or both)

• if R is a regexp, so is R* (R+)

• matches
any sequence of 0 (1) or more matches for R

regular expressions

1909-1994

Kleene *, +

*+

Stephen Cole Kleene

Sunday, 4 December 11

http://en.wikipedia.org/wiki/1909
http://en.wikipedia.org/wiki/1909
http://en.wikipedia.org/wiki/1994
http://en.wikipedia.org/wiki/1994

