[JP Assignment 1: Chat bots

November 1, 2010

Introduction

This assignment is due at 16:00 on Friday 22nd October 2010.
The aim of this practical exercise is to write a simple “chat bot” in Java.
During the course of the exercise you will:

e gain some programming experience by working on a more extended
problem than you have tackled previously;

e practise integrating your code with core Java APIs and third-party
libraries;

e work with a commonly used computational linguists’ resource (Word-
Net);

e drive your friends mad with nonsensical automatically generated lan-
guage.

Chat bots

A chat bot (or “chat ’bot”, short for “chat robot”) is a program which has
been designed to converse with people, or indeed other chat bots. Since
Weizenbaum’s famous ELIZA, many, many chat bots have been created.
Some were designed as competitors for the Loebner prize, others were cre-
ated to demonstrate new language technologies, while yet others were cre-
ated to exploit commercial interests in improving online sales. None of them
are very convincing. However, creating a chat bot is good fun, and is an
interesting learning exercise. In addition, the code you write in this practical
exercise will be used in Assignment 2. You can choose to give your chat bot
any personality and favourite conversational topics that you want.

Overview

By the end of this exercise you will have written a chat bot in Java. The
chat bot has the following features:



e [t can generate sentences to start conversations with another chat bot.

e It can process input from another chat bot and generate a response in
the form of a sentence.

Marking Scheme
Marks will be awarded according to the following scheme:

Task 1: Generating sentences 50%
Task 2: Replying to input 50%

For each task, marks will be allocated for: clear and concise docu-
mentation; programming style; and evidence of testing. See later for
details.

Preparation

You will find it helpful to refer to chapter five of “Objects First with Java: A
Practical Introduction using BlueJ”. You will also need to download the code
on which you will base your work from the IJP course web page. The descrip-
tion of WordNet and the online glossary at http://wordnet.princeton.
edu/man/wngloss.7WN.html will also be useful.

Sanity Warning: Don’t lose sleep over this exercise! If you are having
difficulty, ask your lab demonstrator or lecturer for help.

Setting up BluelJ

If you haven’t already done so, make a directory called IJPAssignments
under your home directory. Download the BlueJ skeleton project archive
for this assignment from the IJP course web page into this newly created
IJPAssignments directory. Extract the archive. Open the [JPAssignment1
project in BlueJ. You must tell BlueJ to use an archived Java package
(jwnl.jar) for this project. To do this, go to the Tools menu, choose
Preferences and then go to the Libraries tab. Click on Add, and browse
to IJPAssignment1/1ib/jwnl. jar. Restart BluelJ.

Extra step if you are not working on a DICE machine (e.g.
at home): if you want to work on a non-DICE machine, you will need
to change the configuration of the WordNet package. First, you need to
get a copy of WordNet 1.7.1 (and it MUST be this version) from http:
//wordnet.princeton.edu/oldversions. Install it on your PC. The file
IPJAssignmentl/jwnl/file_properties.xml specifies where BlueJ can find
the data files for WordNet. You should change the line:

<param name="dictionary_path"
value="/group/teaching/ijp/WordNet-1.7.1/dict"/>



to refer to the place where you installed WordNet on your computer. For
example:

<param name="dictionary_path" value="D:/WordNetl1.7.1/dict"/>

Getting Started

Open the [JPAssignmentl project in BlueJ. You will find that there is a
package structure to help you. Packages are collections of classes with related
functionality. For this assignment, all the code is contained within a package
called ijp.assignmentl. Expand this package in BlueJ. You will see that it
contains three sub-packages: langen; chat and utils. The langen package
contains classes which handle language generation tasks. The chat package
contains classes associated with the chat bots. The utils package contains
helper code which will be useful to you when you modify the langen classes.
You will not need to modify the utils package, although you may find it
useful to use BluelJ to try out some of the methods in WordNetWrapper.

Open the chat package and look at the interface for the ChatBot class.
You will implement the methods for starting conversations, and for replying
to a remark made by another chat bot. These methods will be used by the
Discussion class to enable a “dialogue” between two ChatBot objects.

The implementation of the ChatBot methods rely heavily on code you
will write in the langen package. To reduce the complexity of this exercise,
you will use a template approach to language generation. Open the langen
package in BlueJ. There is an interface called LanguageGenerator which
specifies methods for generating sentences and replies, and an implemen-
tation of that interface called TemplateLanguageGenerator. This design
makes it easy to swap in different sorts of language technology by imple-
menting the methods in LanguageGenerator. For example, if we wanted
to use an ATN (Augmented Transition Network — you don’t need to know
about these) approach instead of a template approach to generation, we
could replace TemplatelLanguageGenerator with another implementation
of LanguageGenerator, which would provide the same functionality but us-
ing augmented transition networks instead of templates. The code in the
chat package would not be affected.

Task 1: Sentence generation

The first task is to implement a sentence generator by completing the Temp-
latelLanguageGenerator method generateSentence(). The Sentence-
Template class will store the data for your generation templates. Sentence-
Templates have a field indicating what type of utterance the template
generates, e.g. question or reply. You may add to the types if you wish.
SentenceTemplates also have a String field which stores the template as



a string in a special format. These templates contain either canned text or
instructions to generate text to fill gaps in the template. The canned text
and the instructions are separated by “%” strings. A simple example String
representing a template is shown below:

"Did you know that %NOUN}% is %ADJECTIVEY?"

The canned text “Did you know that” is followed by an instruction to
generate a noun, followed by the canned text “is” followed by an instruction
to generate an adjective. An example sentence which could be generated by
this template is:

"Did you know that beauty is transitory?"

Activities

Remember the marking scheme: throughout these activities, as well as
basic correctness, we will be looking for clear and concise documenta-
tion, good programming style and evidence of testing. See later for
details.

1. Write five example templates of your own. Write a method which pop-
ulates the TemplateLanguageGenerator.sentencelist data struc-
ture with these templates.

Hint: Remember, the more ambitious you make your templates, the
harder it will be to write code which expands the templates in the next
step!

2. The templates you have written are a shorthand way of specifying how
to generate sentences. You also need to write some code which expands
these template strings into strings representing the full sentence. To
do this, implement the expandTemplate method to give it the func-
tionality described its Javadoc comment. You will find the methods
in utils.WordNetWrapper useful if you want to generate nouns, verbs
or adjectives at random. A WordNetWrapper object is large — con-
sider how many such objects your program is using and if it needs that
many.

3. Now you are ready to implement the method generateSentence.
Make it pick a sentence from your sentencelList at random, and
use your expandTemplate method to generate a sentence from that
template. Test the sentence generator in BluelJ.

4. Use your sentence generation code to implement the startConversat-
ion method in ChatBot. Implement the other methods and construc-
tor in ChatBot, apart from reply, which you will tackle in the next
task.

[10 marks |

[25 marks ]

[7 marks |

[8 marks |



Task 2: Responding to input

The second task is to make your chat bot (slightly) more responsive to input.
This input could come from another chat bot or a human user. This will re-
quire implementation of the generateReply method in TemplateLanguage-
Generator.

Activities

Remember the marking scheme: throughout these activities, as well as
basic correctness, we will be looking for clear and concise documenta-
tion, good programming style and evidence of testing. See later for
details.

5. Implement simple keyword matching so that the chat bot responds to
certain words within remarks with a segment of canned text. This
should be implemented in the method keyWordMatch.

Another approach to responding to input is generate replies using tem-
plates, rather than relying completely on canned text. To keep it simple,
the chat bot will generate a reply which is (vaguely) related to the input
through reference to related concepts.

6. Write a method called findKeyWord which picks a word from the input
string which will be used to generate the reply. Write a method called
expandTemplateTopic which expands the templates you specified in
Task 1 using words related to the keyword from the input selected
by findKeyWord. You can use the methods in WordNetWrapper to
help you find words which are related to each other. For example,
in response to the example template above, you could use to respond
with a sentence which contains a synonym of the first noun in the
input.

7. Now implement generateReply using the methods you implemented
in this task. It should pick randomly whether to use canned text or a
generated reply. Test this method using BlueJ.

Hint: You will find that this approach to language understanding is
somewhat limited! Don’t spend too long trying to make your chat bot
talk sense!

8. Finish implementing the methods in ChatBot. Test your chat bot using
the Discussion class in the chat package. Make it converse for ten
conversational turns (five from you, and five from the chat bot). Devise
a set of tests to discover the capabilities (and/or limitations) of your
chat bot. Save each chat output to a text file called TestN.txt, where

[10 marks ]

[25 marks ]

[5 marks ]



N is the number of the test. Insert some text at the top of each test
file explaining why you chose to do that test, and any improvements
you would like to make to your code based on the results of your test.
Create a folder called TestResults in the directory IJPAssignments/
IJPAssignmentl/. Copy your test files into the TestResults/ folder.

Testing and Documentation

Clear and concise documentation means proper Javadoc-style commenting of
classes and methods (for users of the class), and adequate inline commenting
of code (purpose of each attribute, private method, branch points, etc).

“Evidence of testing” means unit tests (Section 6.3 and 6.4 of the book).
You are not expected to write full unit tests for all the classes and methods
— that would be a big job. But you should write at least one test for each
class, and test one class quite thoroughly; you should make it clear that you
understand the concept of unit testing and are able to apply it.

JUnit supports testing of public methods. However expandTemplate,
keyWordMatch, and findKeyWord are private — the public method which
uses them is generateReply, which uses one of them at random. So you can-
not effectively test these three by simply writing a JUnit test for generate-
Reply.

One way around this is to write additional public methods (in the same
class) which are wrappers for these three. For example:

public String keyWordMatchWrapper(String remark) {
return keyWordMatch(remark) ;

}

Then write a unit test for the public method keyWordMatchWrapper,
which will effectively be a test for private method keyWordMatch. There are
better ways, but they involve advanced techniques not covered until later in
this course.

Also, there is no need to write tests for the classes in Utils (WordNet-
Wrapper, etc.): you are using these classes, not authoring them.

In Activity 8, the tests here are not unit tests. In these tests you start
the conversation off with some question or statement, and see where the
Discussion class takes the conversation over the course of ten turns. You
want to start with a variety of different types of questions or statements to
show for what sort of starting points your chat bot is effective and ineffective
(for example, if you start off with “Why?”, what will your chat bot do?).

[10 marks ]



Plagiarism

Informatics takes plagiarism seriously, and has automatic plagiarism detec-
tion systems for code submissions. Penalties apply, and Head of School and
Head of College will be notified if plagiarism is detected.

A useful method of learning is discussing and sharing ideas with other
students. However, you MUST NOT present other students’ work as your
own:

e Don’t share code with other students.

e Acknowledge ideas and help you’ve had from other people.

You must take steps to ensure that your work is not copied by other
students:

e Don’t give people your code.
e Make sure your directories are read protected.

e Don’t leave print outs of your work lying around.

If you are not sure exactly what is meant by plagiarism, see: http:
//www.inf.ed.ac.uk/teaching/years/msc/courseguidel0.html#plag

Electronic Submission

If you followed the directions above, your work (code and test results) for
this assignment should be in the folder IJPAssignmentl/ contained in the
directory /home/sXXXXXXX/IJPAssignments/ (where XXXXXXX is your ma-
triculation number). You will submit the folder IJPAssignment1/.

Go to the folder /home/sXXXXXXX/IJPAssignments/ by issuing the fol-
lowing command at a UNIX shell prompt:

cd /home/sXXXXXXX/IJPAssignments/

Now, create an archive of the IJPAssignmentl folder (and all of its
subfolders) by typing

tar cjvf IJPAssignmentl-complete.tar.bz2 IJPAssignmentl/

You will use the submit command to send us this archive. At the UNIX
shell prompt, type

submit msc ijp 1 IJPAssignmentl-complete.tar.bz2



You will be asked to confirm that you wish to submit your work. Once
you say yes, you should see a message that your submission was successful.
Ask a lab demonstrator or lecturer for help if you foresee having trouble
with the submission process.

You can submit your work more than once. Each time you do so, the
previous version will be overwritten. Only the final submission will be
marked.



