Introduction to Cognitive Science: Notes

lI: Representing the World Symbolically

e Readings for this sectiotHuffman 1971



ll: Representing the World Symbolically

The Marr and Poggio network can be seen as a (partial) modglaafe itself.

It could be used as input to guide reaching and graspingigas an input to
the cerebellum, which represents the learned associdirmsg visual and
motor cortex in actions like grasping a nut or drinking froraug.

We will return to this idea in a later section

But for such actions to be at all useful, the animal has to ktit@awthe
surfaces in view belong to a nut or a cup, rather than, sayakesor a tiger.



Object Recognition

e This is a quite different kind of problem from representihg position of a
surface in three-space. We needdoogniseobjects as cups, snakes, etc.

anywheran space, in order to aeppropriatelyon knowledge of where they
are.

e This is hard, because:
— Not all surfaces of the object are visible

— Even visible surfaces may be obscured by nearer objects

e Marr proposed that object recognition and scene analygigned a
representation called the “Two and a half dimensional $Ketc



The 25D Sketch

The Z%D Sketch is a two dimensional array in which information framany
sources, including stereopsis, concerning the oriemtatral relative depth
from the observer of every region in the image is represenbgpether with
Information about edges, or abrupt changes in those values.

We'll assume that this information iscomplete That is, some regions may
be too distant for binocular disparity to yield depth, anthecedges may be
missing or incomplete.

In particular, finding edges from grey-scale data alone isrg faard problem.

Nevertheless, as an example of scene analysis using%thesl?detch, we will
consider the information that is available from edges altmen think about
iIntegrating depth and orientation information.



Line Drawings

e We can think of this as lne drawing though in fact it is a neurally
represented data structure callepieture graph representing the
connectivity between lines representing edges. For exampl

Figure 1. A plane-faced object with trihedral vertices



What's Wrong with This Picture?

v

Figure 2: An anomalous object



Guzman 1968

e Local information about connectivity from junction types:

"Arrow" "y "Tee" "EIl"

Figure 3: Positive {/) and negativeX) links (after Guzman).

e Link Inhibition Heuristic a positive link between two regions across a line
can only be accepted in the absence of any negative evidedlie
junction at the other end of the line.



The General Position Assumption

e There is more information in junctions, provided we assuhat the
viewpoint is in “General Position”, such that a slight charmlpes not change
picture topology:

Figure 4: A block with a hole



The General Position Assumption

e An interpretation that violates General Position

Figure 5: A scene corresponding to a wrong analysis of theigus picture.



Huffman-Clowes Line Labeling

e All possible interpretations of trihedral junctions undiee assumption of
General Position.
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Figure 6: Huffman/Clowes Junction Labels
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Holes Correctly Analyzed

e Using this richer representation of junction interpreia, we can recast the
Link inhibition Heuristic as a principle of Edge Consistgnc

(1) EDGE CONSISTENCY. Any consistent assignment of labels to the junc-
tions in the picture must assign teamdine-label ¢, —, «, —) to any

given line.

Figure 7: A block with a hole, labeled
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Waltz-Mackworth Algorithm

There are at least three other labelings of 7—what are timelyage they
possible interpretations? Are there astherlabelings?

To find all and only the possible labelings of a figure we needlgarithm.

Brute force search is exponential in the average ambigtitlyelabels
O(4.5").

However, Guzman'’s observation that most though not all @fitifiormation is
In adjacentpairs of junctions suggest that the branching factor carube c
down by first eliminating all junction labels that are incmtent with all
labels on any neighbor junction.

This is the idea behind Waltz filtering Waltz 1975.
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Waltz-Mackworth Algorithm

3

Figure 8: A Minimal Scene

e The label A2 for junction 1 is initially edge consistent witke label L3 on 2,
the A2 label on 3, and the L4 label on 4 (although these lab&lisurn out
not to be consistent with each other.)

e However, the label L4 for 2 is not edge-consistent with amelan 1, so it
can be removed from the 2’s list

e This means that label A2 on junction 3 is not edge-consistghtany label
on junction 2, so it can be removed from that junction’s list.
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Waltz-Mackworth Algorithm

However, this means that the arrow label of type A2 on jumciias no longer
edge-consistent with any label on junctionVB8e must therefore make sure
that at some point we revisit junction 1, so that A2 will be o&sd from its
list of edge-consistent labels.

This example reveals the following important principle:

Any algorithm must ensure that, if a label is removed fromrajion i, then
the labels on all of its neighbours will be reexamined, inecasme label has
now ceased to be edge-consistent with |i.

This principle will need one further refinement, but in essen is the
principle behind the algorithms developed by Waltz in higa ¢hesis (cf.
Waltz 1975 and Mackworth 1977).
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Waltz-Mackworth Algorithm

e The simplest such algorithm (called AC1 for reasons we'tltgecan be
stated informally as follows:

(2) Associate with each junction in the picture a set of daesjunction
labels for that junction type, as given in figure 6.
Repeat the following procedure until there is no change &St of
labels associated with any junction:
For each junction in the picture, for each neighbouring junctignn
the picture, remove any junction label frarfor which there is no edge-
consistent junction label on

e This simple algorithm is unecessarily costly in that, tadgthe end of the
iteration, most of the junctions will be being repeatedlammned without any
change to their label-lists.

e The sources of this inefficiency can be thought of in the follg terms.
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Waltz-Mackworth Algorithm

e First, at each iteration, only junctiomst least one of whose neighboyriost
a label at the previous iteration need be examined. Suchiqunrscmust be
examined because the lost label omay have been the only label gn
consistent with some label on

e Second, at each iteration, any junctionith a neighboun thatdid lose a
labelstill need not be examined if the reason the neighhadast that label
was because of edge-inconsistency witiself. In that case the labels on
must be consistent with the remaining labelsjon

e Third, the only respect in which some label on such a junatioay have
been made inconsistent by the removal of a label on a neigimgpjunction |
Is with respect tq itself, since the line-labels imputed to the lifigj) by the
labels on are the only thing that may have been made inconsistent by
removing this particular label. consistent.
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Waltz-Mackworth Algorithm

e These observations mean that we should define our algoritiimrespect to
an independent list of “arcs”, where an arc idigectedpair of neighbouring
junctions, so that there are two ar@sj) and(j,i) for each line joining
junctionsi andj in the picture.

e This implies defining the labels at a junctiom terms of lists of directed arcs
represented by ordered pairs of junctions numilpgrs

e \We then define the algorithm in termsarc-consistencyather than
edge-consistency, defined as follows for the line-labetasi:

(3) ARC CONSISTENCY. Any consistent assignment of labels to the junc-
tions in the picture must assign teameline-label ¢, —, —, <) to an
arc (i, j) as to the inverse arg, i),

Such algorithms are known as “arc-consistency,” or AC, algms.
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Waltz-Mackworth Algorithm

e A version of a more complex but less costly algorithm thanghexious one,
known asAC-3 can then be stated as follows. (A “queue” is a list to which
things can only be added at the end).

(4) AC-3 Associate with each junction in the picture a set of posginhc-
tion labels for that junction type, as given in figure 6.
Make a queue of all the ar¢sg j) in the picture and repeat the following
procedure until the queue is empty:
Remove an ar¢i, j) from the queue. For each labebn junctioni, if
there is no label on which is arc-consistent with removel from i. If
any such label is removed from junctiorthen for all arcgk,i) in the
picture exceptj,i), put(k,i) on the queue if it isn’t there already.
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Waltz-Mackworth Algorithm

e |nitial labels:
Al, A2, A3

L1, L2, L3, L1, L2, L3,

L4, L5, L64 L4, L5, L6
2

3
Al, A2, A3

Figure 9:AC-3applied to the simple pyramid: State 0.

e We will also assume that the initial queue has the arcs indlh@ting order:
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(3) (1,2)(2,1)(2,3)(3,2)(3,4)(4,3)(4,1)(1,4)(1,3)(3,1)

e The first arc removed i€l, 2). Inspection of the labels in figure 6
corresponding to the indices will show that all labels ond @nsistent with
some label on 2, (although the converse does not apply). tdoadithe form
(k, 1) are considered for adding to the queue, which is as follows

(6) (2,1)(2,3)(3,2)(3,4)(4,3)(4,1)(1,4)(1,3)(3,1)

e The next arc examined {2, 1). This time, two of the labels on junction 2 are
not arc-consistent with any label on 1, namely L2 and L4 (gpadi 6). All
arcs of the formk, 2) except for(1,2) are therefore considered for addition to
the queue. However, they are all already present, so the neuegs simply
the following:

(7) (2,3)(3,2)(3,4)(4,3)(4,1)(1,4)(1,3)(3,1)

e The set of labels on the picture is reduced as in figure 10
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Al, A2, A3

L1, L2, L3, L1, L3,

L4, L5, L64 L5, L6

3

Al, A2, A3

Figure 10:AC-3applied to the simple pyramid: State 2.

e The next arc examined {2, 3). Another label on 2 is not arc-consistent with
any label on 3, namely L3, so the labels are as in figure 11.
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Al, A2, A3

L1, L2, L3, L1,

L4, L5, L64 L5, L6

3

Al, A2, A3
Figure 11:AC-3applied to the simple pyramid: State 3.

e Among arcsk,2) (1,2) is not on the queue, so it goes on at the back. The
gueue is as follows:

(8) (3,2)(3,4)(4,3)(4,1)(1,4)(1,3)(3,1)(1,2)

e The next arc chosen (8, 2). The label A2 on junction 3 is not arc-consistent
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with any label remaining on 2, so it is removed. The resultaigeling is as in
figure 12.

Al, A2, A3

L1, L2, L3, L1,

L4, L5, L64 L5, L6

3

Al, A3
Figure 12:AC-3applied to the simple pyramid: State 4.

All the arcs(k,3) other than2,3) are already on the queue so the following is
the next state of the queue:
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(9) (3,4)(4,3)(4,1)(1,4)(1,3)(3,1)(1,2)

e The remaining steps of the iteration are left as an exerdisey result in the
sets of arc-consistent labels for the picture shown in fiduge

Al, A3

L1, L1,
L5, L6 L5, L6

3

Al, A3

Figure 13:AC-3applied to the simple pyramid: Final State.
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Waltz-Mackworth Algorithm

It is important to notice that this does not complete the t#skentifying the
three interpretations that these labels allow for the figig@ whole.
Nevertheless, we have reduced the branching factor forasearch quite
considerably.

Of course, if the arc-consistency algorithm was itself exgautial this would
not be an interesting result.

An upper bound on the worst-case complexity of the algorih@(n?), since
If every junction were connected to every other junctiona picture, then
there would bénx (n—1)) arcs.

However, pictures are by definitigrlanar— that is, lines cannot cross. The
number of lines (and hence arcs) in the picture can only B&fimn.

All the algorithms considered above (even AC1) are theesfeadily
parellizable, say as cellular automata of the kind disaligyeMarr.
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Waltz-Mackworth Algorithm

e This is an important result, because Waltz (1975) discal/drat if the set of
line and junction labels is generalised to describe moreptiocated classes of
pictures, including polyhedral vertices, and crack andisiaedges, then the
benefits of the arc consistency algorithm are even great@ojportion to the
complexity of brute-force search than with the simpler $eabels.

Figure 14: An unambigous picture including shadows andksrac
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25D Sketch Again

While Waltz did not consider the use of the kind of orientatioformation
that Marr imputes to the?D sketch, This information can be expected to
further contribute disambiguation. For example it wouldngdetely
disambiguate Figures 13 and 7.

Crucially, Huffman (1971) showed that orientation infotioa alonecarries
the same information as junction connectivity, suggedinad missing lines
can be tolerated.

This theory seems to put us in a position to match the visigpeets of the
segmented world to the objects that generate those apgesaraay by
Identifying a structure oGeneralized Cylinder@arr and Nishihara 1978;
Biederman (1987). This remains an unsolved problem.

The use of probability to model likely and unlikely interpagons seems not
to have been extensively explored in this area (4th Yeaepthj
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Transition

We've seen how the world can be represented by map-like hstsatures in
the brain, and how symbolic computation can be performedesd
structures to segment the world in terms of objects andapaiations.

We've also seen a structure that could be used to mediateebatsuch object
perception anactionslike reaching and grasping objects, in the form of the
binocular disparity map.

We've also seen a structure that can be used to interpraahssenes and
support recognition.

But how do we decide/hichactions to take?
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