
Introduction to Cognitive Science: Notes

II: Representing the World Symbolically
• Readings for this section: Huffman 1971
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II: Representing the World Symbolically

• The Marr and Poggio network can be seen as a (partial) model ofspace itself.

• It could be used as input to guide reaching and grasping, acting as an input to

the cerebellum, which represents the learned associationslinking visual and

motor cortex in actions like grasping a nut or drinking from acup.

• We will return to this idea in a later section

• But for such actions to be at all useful, the animal has to knowthat the

surfaces in view belong to a nut or a cup, rather than, say, a snake or a tiger.
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Object Recognition

• This is a quite different kind of problem from representing the position of a

surface in three-space. We need torecogniseobjects as cups, snakes, etc.

anywherein space, in order to actappropriatelyon knowledge of where they

are.

• This is hard, because:

– Not all surfaces of the object are visible

– Even visible surfaces may be obscured by nearer objects

• Marr proposed that object recognition and scene analysis required a

representation called the “Two and a half dimensional sketch”.
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The 21
2D Sketch

• The 21
2D Sketch is a two dimensional array in which information frommany

sources, including stereopsis, concerning the orientation and relative depth

from the observer of every region in the image is represented, together with

information about edges, or abrupt changes in those values.

• We’ll assume that this information isincomplete. That is, some regions may

be too distant for binocular disparity to yield depth, and some edges may be

missing or incomplete.

• In particular, finding edges from grey-scale data alone is a very hard problem.

• Nevertheless, as an example of scene analysis using the 21
2D sketch, we will

consider the information that is available from edges alone, then think about

integrating depth and orientation information.
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Line Drawings

• We can think of this as aline drawing, though in fact it is a neurally

represented data structure called apicture graph, representing the

connectivity between lines representing edges. For example:

Figure 1: A plane-faced object with trihedral vertices
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What’s Wrong with This Picture?
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Figure 2: An anomalous object
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Guzman 1968

• Local information about connectivity from junction types:

"Arrow" "Y" "Tee" "Ell"

Figure 3: Positive (
√

) and negative (×) links (after Guzman).

• Link Inhibition Heuristic: a positive link between two regions across a line

can only be accepted in the absence of any negative evidence from the

junction at the other end of the line.
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The General Position Assumption

• There is more information in junctions, provided we assume that the

viewpoint is in “General Position”, such that a slight change does not change

picture topology:

A B

Figure 4: A block with a hole
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The General Position Assumption

• An interpretation that violates General Position

Figure 5: A scene corresponding to a wrong analysis of the previous picture.

9



Huffman-Clowes Line Labeling

• All possible interpretations of trihedral junctions underthe assumption of

General Position.
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Figure 6: Huffman/Clowes Junction Labels
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Holes Correctly Analyzed

• Using this richer representation of junction interpretations, we can recast the
Link inhibition Heuristic as a principle of Edge Consistency:

(1) EDGE CONSISTENCY: Any consistent assignment of labels to the junc-

tions in the picture must assign thesameline-label (+,−,←,→) to any

given line.
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Figure 7: A block with a hole, labeled
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Waltz-Mackworth Algorithm

• There are at least three other labelings of 7—what are they, and are they

possible interpretations? Are there anyother labelings?

• To find all and only the possible labelings of a figure we need analgorithm.

• Brute force search is exponential in the average ambiguity of the labels

O(4.5n).

• However, Guzman’s observation that most though not all of the information is

in adjacentpairs of junctions suggest that the branching factor can be cut

down by first eliminating all junction labels that are inconsistent with all

labels on any neighbor junction.

• This is the idea behind Waltz filtering Waltz 1975.
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Waltz-Mackworth Algorithm
1

2

3

4

Figure 8: A Minimal Scene

• The label A2 for junction 1 is initially edge consistent withthe label L3 on 2,
the A2 label on 3, and the L4 label on 4 (although these labels will turn out
not to be consistent with each other.)

• However, the label L4 for 2 is not edge-consistent with any label on 1, so it
can be removed from the 2’s list

• This means that label A2 on junction 3 is not edge-consistentwith any label
on junction 2, so it can be removed from that junction’s list.
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Waltz-Mackworth Algorithm

• However, this means that the arrow label of type A2 on junction 1 is no longer

edge-consistent with any label on junction 3.We must therefore make sure

that at some point we revisit junction 1, so that A2 will be removed from its

list of edge-consistent labels.

• This example reveals the following important principle:

• Any algorithm must ensure that, if a label is removed from a junction i, then

the labels on all of its neighbours will be reexamined, in case some label has

now ceased to be edge-consistent with i.

• This principle will need one further refinement, but in essence it is the

principle behind the algorithms developed by Waltz in his 1972 thesis (cf.

Waltz 1975 and Mackworth 1977).
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Waltz-Mackworth Algorithm

• The simplest such algorithm (called AC1 for reasons we’ll get to) can be

stated informally as follows:

(2) Associate with each junction in the picture a set of possible junction

labels for that junction type, as given in figure 6.

Repeat the following procedure until there is no change to the set of

labels associated with any junction:

For each junctioni in the picture, for each neighbouring junctionj in

the picture, remove any junction label fromi for which there is no edge-

consistent junction label onj

• This simple algorithm is unecessarily costly in that, towards the end of the

iteration, most of the junctions will be being repeatedly examined without any

change to their label-lists.

• The sources of this inefficiency can be thought of in the following terms.
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Waltz-Mackworth Algorithm

• First, at each iteration, only junctionsi at least one of whose neighboursj lost

a label at the previous iteration need be examined. Such junctions must be

examined because the lost label onj may have been the only label onj

consistent with some label oni.

• Second, at each iteration, any junctioni with a neighbourj thatdid lose a

labelstill need not be examined if the reason the neighbourj lost that label

was because of edge-inconsistency withi itself. In that case the labels oni

must be consistent with the remaining labels onj.

• Third, the only respect in which some label on such a junctioni may have

been made inconsistent by the removal of a label on a neighbouring junction j

is with respect toj itself, since the line-labels imputed to the line(i, j) by the

labels oni are the only thing that may have been made inconsistent by

removing this particular label. consistent.
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Waltz-Mackworth Algorithm

• These observations mean that we should define our algorithm with respect to

an independent list of “arcs”, where an arc is adirectedpair of neighbouring

junctions, so that there are two arcs(i, j) and( j, i) for each line joining

junctionsi and j in the picture.

• This implies defining the labels at a junctioni in terms of lists of directed arcs

represented by ordered pairs of junctions numbersi, j.

• We then define the algorithm in terms ofarc-consistencyrather than

edge-consistency, defined as follows for the line-labelingtask:

(3) ARC CONSISTENCY: Any consistent assignment of labels to the junc-

tions in the picture must assign thesameline-label (+,−,→,←) to an

arc(i, j) as to the inverse arc( j, i),

Such algorithms are known as “arc-consistency,” or AC, algorithms.
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Waltz-Mackworth Algorithm

• A version of a more complex but less costly algorithm than theprevious one,

known asAC-3, can then be stated as follows. (A “queue” is a list to which

things can only be added at the end).

(4) AC-3: Associate with each junction in the picture a set of possible junc-

tion labels for that junction type, as given in figure 6.

Make a queue of all the arcs(i, j) in the picture and repeat the following

procedure until the queue is empty:

Remove an arc(i, j) from the queue. For each labell on junctioni, if

there is no label onj which is arc-consistent withl , removel from i. If

any such label is removed from junctioni, then for all arcs(k, i) in the

picture except( j, i), put(k, i) on the queue if it isn’t there already.
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Waltz-Mackworth Algorithm

• Initial labels:

1

2

3

4

L1, L2, L3,
L4,  L5,  L6

L1, L2, L3,
L4,  L5,  L6

A1,  A2,  A3

A1,  A2,  A3

Figure 9:AC-3applied to the simple pyramid: State 0.

• We will also assume that the initial queue has the arcs in the following order:
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(5) (1,2)(2,1)(2,3)(3,2)(3,4)(4,3)(4,1)(1,4)(1,3)(3,1)

• The first arc removed is(1,2). Inspection of the labels in figure 6

corresponding to the indices will show that all labels on 1 are consistent with

some label on 2, (although the converse does not apply). No arcs of the form

(k,1) are considered for adding to the queue, which is as follows

(6) (2,1)(2,3)(3,2)(3,4)(4,3)(4,1)(1,4)(1,3)(3,1)

• The next arc examined is(2,1). This time, two of the labels on junction 2 are

not arc-consistent with any label on 1, namely L2 and L4 (see figure 6). All

arcs of the form(k,2) except for(1,2) are therefore considered for addition to

the queue. However, they are all already present, so the new queue is simply

the following:

(7) (2,3)(3,2)(3,4)(4,3)(4,1)(1,4)(1,3)(3,1)

• The set of labels on the picture is reduced as in figure 10
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1

2

3

4

A1,  A2,  A3

A1,  A2,  A3

L1, L2, L3,
L4,  L5,  L6

L1,  L3,
L5,  L6

Figure 10:AC-3applied to the simple pyramid: State 2.

• The next arc examined is(2,3). Another label on 2 is not arc-consistent with

any label on 3, namely L3, so the labels are as in figure 11.
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1

2

3

4

A1,  A2,  A3

A1,  A2,  A3

L1, L2, L3,
L4,  L5,  L6 L5,  L6

L1,

Figure 11:AC-3applied to the simple pyramid: State 3.

• Among arcs(k,2) (1,2) is not on the queue, so it goes on at the back. The
queue is as follows:

(8) (3,2)(3,4)(4,3)(4,1)(1,4)(1,3)(3,1)(1,2)

• The next arc chosen is(3,2). The label A2 on junction 3 is not arc-consistent
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with any label remaining on 2, so it is removed. The resultinglabeling is as in

figure 12.

1

2

3

4

L1, L2, L3,
L4,  L5,  L6 L5,  L6

L1,

A1,  A2, A3

A1,  A3

Figure 12:AC-3applied to the simple pyramid: State 4.

All the arcs(k,3) other than(2,3) are already on the queue so the following is

the next state of the queue:
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(9) (3,4)(4,3)(4,1)(1,4)(1,3)(3,1)(1,2)

• The remaining steps of the iteration are left as an exercise.They result in the

sets of arc-consistent labels for the picture shown in figure13.

1

2

3

4
L5,  L6
L1,

A1,  A3

L1,
 L5,  L6

A1,  A3

Figure 13:AC-3applied to the simple pyramid: Final State.
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Waltz-Mackworth Algorithm

• It is important to notice that this does not complete the taskof identifying the
three interpretations that these labels allow for the figureas a whole.
Nevertheless, we have reduced the branching factor for sucha search quite
considerably.

• Of course, if the arc-consistency algorithm was itself exponential this would
not be an interesting result.

• An upper bound on the worst-case complexity of the algorithmis O(n2), since
if every junction were connected to every other junction in the picture, then
there would be(n∗ (n−1)) arcs.

• However, pictures are by definitionplanar – that is, lines cannot cross. The
number of lines (and hence arcs) in the picture can only be linear inn.

• All the algorithms considered above (even AC1) are therefore readily
parellizable, say as cellular automata of the kind discussed by Marr.
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Waltz-Mackworth Algorithm

• This is an important result, because Waltz (1975) discovered that if the set of
line and junction labels is generalised to describe more complicated classes of
pictures, including polyhedral vertices, and crack and shadow edges, then the
benefits of the arc consistency algorithm are even greater inproportion to the
complexity of brute-force search than with the simpler set of labels.

1

3
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CC
5

>

6

Figure 14: An unambigous picture including shadows and cracks
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21
2D Sketch Again

• While Waltz did not consider the use of the kind of orientation information

that Marr imputes to the 212D sketch, This information can be expected to

further contribute disambiguation. For example it would completely

disambiguate Figures 13 and 7.

• Crucially, Huffman (1971) showed that orientation information alonecarries

the same information as junction connectivity, suggestingthat missing lines

can be tolerated.

• This theory seems to put us in a position to match the visible aspects of the

segmented world to the objects that generate those appearances, say by

identifying a structure ofGeneralized Cylinders(Marr and Nishihara 1978;

Biederman (1987). This remains an unsolved problem.

• The use of probability to model likely and unlikely interpretations seems not

to have been extensively explored in this area (4th Year project).
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Transition

• We’ve seen how the world can be represented by map-like neural structures in

the brain, and how symbolic computation can be performed on these

structures to segment the world in terms of objects and spatial relations.

• We’ve also seen a structure that could be used to mediate between such object

perception andactionslike reaching and grasping objects, in the form of the

binocular disparity map.

• We’ve also seen a structure that can be used to interpret visual scenes and

support recognition.

• But how do we decidewhichactions to take?
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