
Introduction to Cognitive Science
Assignment 2: The Associative Net

Due Tuesday October 27th, 2009, hardcopy, in class

How is it that you notice a mouse behind the breadbox when all that is visible is
its tail? How come you notice when somone mentions your name in the midst of
a buzz of noisy conversation at a Cocktail Party—whatever that is—even when
you have no idea what they said about you? What exactly is going on when you
cannot remember the name of someone you are talking to, but know that it will
come to you in a minute, and it does?

These are examples of “retrieval from partial information”, “recognition from
noisy input”, and “content addressable memory”. They are all best understood
in terms of massively parallel distributed processing—(M)PDP—using what are
somewhat metaphorically called “Neural Networks.”

Since even a two dimensional mouse represents rather a lot of information, we
are going to look at recognition etc. of “one-dimensional” mice, represented by
bit-vectors, or ordered sequences of 0s and 1s. (Maybe noticing a snake behind
the toilet bowl would have been a better example.)

1 The Associative Net

The network you are going to work with was invented by Longuet-Higgins,
Buneman, and Willshaw (see Hinton and Anderson (eds.) 1981). It is called
the “Associative Net.” This device illustrates three basic properties of network
models which are characteristic of mechanisms involved in phenomena of hu-
man memory and attention like those mentioned above. namely:

• Non-localized storage (“Distributivity”)
• Ability to recover complete stored patterns from partial or noisy input

(“Graceful Degradation”).
• Ability to work even in the face of damage (“Holographic Memory”).

Consider the following network, connecting 16 input units each of which has a
directed connection to all and only 16 output units. The connection strengths all
start at 0. Input is along the top, output from the righthand side.

1



vvvvvvvvvvvvvvvv

0000000000000000>

0000000000000000>

0000000000000000>

0000000000000000>

0000000000000000>

0000000000000000>

0000000000000000>

0000000000000000>

0000000000000000>

0000000000000000>

0000000000000000>

0000000000000000>

0000000000000000>

0000000000000000>

0000000000000000>

0000000000000000>

Input and output patterns consist of binary vectors. So the input and output units
have activities of 1 or 0. To associate an input pattern with an output pattern, we
simply set to 1 all of the connections between a unit that is on in the input pattern
and a unit that is on in the output pattern. If the connection was already 1, we
leave it alone. Connections can never go back from 1 to 0. We will consider the
“auto-associative” case where the input and the output vectors are the same—
since this is the easiest case to look at the effects of noise and damage in.

Below is the net storing the pattern 0110001110101001 as input in association
with itself as output:

2



0110001110101001

vvvvvvvvvvvvvvvv

0000000000000000>0

0110001110101001>1

0110001110101001>1

0000000000000000>0

0000000000000000>0

0000000000000000>0

0110001110101001>1

0110001110101001>1

0110001110101001>1

0000000000000000>0

0110001110101001>1

0000000000000000>0

0110001110101001>1

0000000000000000>0

0000000000000000>0

0110001110101001>1

To retrieve an association, we sum the total input, x, received by each output unit
from all the on switches in its row. Then we compare x with the number y of
active input units, and threshold at y. That is, if x = y, that output fires, or is
turned on. If x < y, the output unit does not fire, but remains off. (If x > y there
is something wrong with your program!)

Satisfy yourself that this procedure yields the same pattern 0110001110101001
as output from the memory shown above:

Input: 0110001110101001

Totals: 0880008880808008

Output: 0110001110101001

More interestingly, if we input the “damaged” or “partial” pattern 0000001110101001,
we still get 0110001110101001 as output, though with lower signal strength (6
instead of 8), and therefore a lower threshold. Check this—you should get:

Input: 0000001110101001

Totals: 0660006660606006

Output: 0110001110101001

3



This is a bit like recognizing a mouse, snake, etc. when its head is behind the
breadbox, or whatever.

Even more interestingly, if we “damage” a bit—say (7,7)—in the above mem-
ory, then from the original pattern 0110001110101001 we can still recover the
complete associate, although this time we have to explicitly lower the threshold
until we get something we know has been stored:

|

v

0000000000000000

0110001110101001

0110001110101001

0000000000000000

0000000000000000

0000000000000000

0110001110101001

0110001010101001<-

0110001110101001

0000000000000000

0110001110101001

0000000000000000

0110001110101001

0000000000000000

0000000000000000

0110001110101001
v

Input: 0110001110101001

Totals: 0880008780808008

Output: 0110001110101001

^

This again is somewhat like biological memory. Damage does not result in the
loss of a specific memory, but to a general degradation of recall in the form of
increased noise.

The homework asks you to investigate the Associative Net. As usual, you could
write a program, but you can easily be the computer yourself. You can get full
credit either way.

4



2 What you have to do

Here are some 16 bit vectors with a random 8 bits set to 1—that is, with 1s and
0s equiprobable, p = .5. Don’t worry, there are far more than you need! (It is
possible there are some duplicates, but its so unlikely I haven’t checked.)

1101001000111001

0011100101110100

0111000111001001

1010001000110111

1011000010011011

1010001001101110

0110101000110101

0111000101110100

1000001111101010

1100110101100100

1001011110100001

0110010010100111

0111110101000001

1001010000110111

0100110110100011

1100110001010101

0011001011001110

1100100001111100

0011111000101010

1011101001101000

0100010110011101

1000111001010011

0011011001100101

1101010011110000

1000110011001110

1010010011110100

1101010100100011

0101011010000111

0101011010100101

1010011110010100

1011110000011001

0110011010101100

1001100001110011

1110011100010100

0011110010100101

1011100100110010

1010000111000111

0001110100111010

1101010001101010

1110110001000011

1110100100110001

1000001100111011

1100010100011101

1101011001101000

0000100101111101

0010011000101111

1110001001001101

1000001101101110

1011110010010001

1010011011100100

0011110111000010

0110010001111001

1101100010110010

1010011100101001

1101110000100110

0101100000110111

1000000101011111

1011100110011000

0011001000111110

0111001010110001

Customize this set by crossing out the first n vectors where n is the last digit in
your student ID.

1. Either implement, or just draw neatly by hand, a 16 by 16 Associative
net. (If you draw it you may want to make some copies of the empty net.
Computers are good for doing this as well)

2. Load the net with the first vector in the set after the ones you have crossed
out, autoassociating this vector as input with itself as output. (If you are
writing a program, you should still use the above random vectors.)

3. Retrieve the same vector from the net, showing the total outputs on each
output unit and the translation into a binary vector. (You can either write

5



the totals and binaries on the right of each row of the network as in the
first example, or as a triple of input, totals, and output, as in later cases.)

4. Change the first 1 in the input vector to 0 and show that the complete
pattern is still retrieved, giving totals and binary result again.

5. Using further vectors in sequence (you will not need many!) you are to
estimate how well the net retrieves associations by iterating the following
procedure.

(a) Add a new auto-association to the same network for the next vector
on the list after the one you just added.

(b) Retrieve all the previously stored patterns including the new one
from the network.

(c) Do this until there is some output which has at least one bit wrong.

Give all your working, showing input, total, and output, for each retrieval.
State the number of patterns you managed to store up to and including the
last one which caused the error.

6. Ideally you should repeat the whole thing using several different sets of as-
sociations with fresh empty 16x16 nets, so you get an idea of how reliable
this number is. (We will use the class average as a really good estimator).
You do not need to give all your working for further sets, if you do any,
although you may give as much as you wish.

7. By making experiments along the same lines with fresh nets and sequences
of vectors with higher and lower densities of 1s, try to show how this
probability affects the number of associations that can be stored without
more than 1 error.

Here is a bunch more vectors with four bits set, to help you, again far more
than you need. Again, get rid of the first n where n is the last digit of your
student ID.

6



1000000010000101

1010000010001000

0100001100000100

1000001010010000

1000110000000001

0100000100001010

0001000010010001

0000100110000100

1011000010000000

0000100100010100

0110000100000100

1000110001000000

0000100010001001

0110101000000000

0010000000001011

0100010000001010

1000010000001100

0000010011000100

1000000011010000

0001100001000001

0001000110001000

0000010100001100

0000000011011000

0000001101000010

0000110100000001

0000001000001110

1000100100100000

0001001001000010

0010100100001000

1010000000100001

1000000110000100

1100000000000011

0000000100010101

0011000000110000

0100011000010000

0011100000000001

1100000110000000

0100100000000110

0001000000101100

1001001000000010

1100000100000001

0000000010010011

0110100000000010

0000010000100101

0000011100010000

0000000010101010

0000001010101000

0000011100000100

0000000101001001

0100000000011100

0001010010000100

0000010001010010

0010000011000010

1101000001000000

0000011010000100

0011010010000000

1101000010000000

0001010010000010

0001100100100000

0110100010000000

(If you need vectors with other densities, just fake them up by making
some appropriate number of these 0s into 1s, or 1s into 0s.)

Give your working—you can use intelligent guesswork as well as experi-
ment for this part if you tell us your reasoning.

8. You have seen that the Willshaw net can recover the entire associated out-
put for an input that has had one or more bits “hidden” or “damaged.” Try
to determine how the number of associations stored affects this ability to
retrieve the complete associate from damaged input in comparison with
retrieval from perfect input. Again, experiments or intelligent guesswork
can be used but give your evidence in both cases.

9. In some sense the Associative Net “hallucinates” the whole snake when
it “sees” part of it. There is no difference apart from the noise level. But
it is important for a mongoose to know the difference between a snake
and a snake behind the toilet-bowl, if mongooses are not to spend a lot of
time bumping into things. What does this suggest to you concerning the
possible psychological reality of the associative net? What is it good for if

7



it can’t tell the difference between a snake and a snake behind the toilet?
(Hint: Snakes are important things to notice, compared with other objects,
so you may want to think in terms of a mechanism that separates becoming
aware of snakes from the business of deciding what to do in a particular
situation.)

Note: Write your name, school ID, and email address at the top of your home-
work. If you have multiple pages, staple them together!

Reference

Willshaw, David: (1981), “Holography, Association and Induction,” in Geoffrey
Hinton and James A. Anderson, (eds.), Parallel Models of Associative Memory,
Hillsdale NJ: Erlbaum. 83-104.

mjs October 18, 2009

8


