
Outline
Overview of REs

REs in Python

Regular Expressions

Steve Renals
s.renals@ed.ac.uk

(based on original notes by Ewan Klein)

ICL — 12 October 2005

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Overview

Goals:

I a basic idea of the formal background for REs

I an ability to write small Python programs that do useful
things with REs

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Motivation

Task: To search for strings using (partially specified)
patterns

Why:

I validate data fields (dates, email addresses,
URLs)

I filter text (spam, disallowed web sites)
I identify particular strings in a text (token

boundaries for tokenization)
I convert the output of one processing component

into the format required for a second component
(rabbit_NN →
<word pos=’’NN’’>rabbit</word>)

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

The Basic Idea

I Regular expressions form a language for expressing patterns.

I The language can be stated as a formal algebra.

I Recognizers for RE can be efficiently implemented.

I ‘Regular expression’ also a term for a pattern that is
constructed using the language.

I Every pattern specifies a set of strings.

I Text string: a sequence of letters, numerals, spaces, tabs,
punctuation, . . .

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Initital Examples

Pattern Matches

concatenation abc abc

disjunction a | b a, b
(a | bb) d ad, bbd

closure a* ε, a, aa, aaa, aaaa, . . .
c(a | bb)* c, ca, cbb, cabb, caa, cbbbb, . . .

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Two Types of RE

Literals Every normal text character is an RE, and denotes
itself.

Metacharacters Special characters which allow you to specify
various sets of strings.

Example—Kleene star (*)

I a denotes a

I a* denotes ε (empty string), a, aa, aaa, . . .

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Preliminaries: Operations on Sets of Strings

Let Σ be a finite set of symbols and let Σ∗ be the set of all strings
(including the empty string) over Σ. Suppose L, L1, L2 are subsets
of Σ∗.

I The union of L1, L2, denoted L1 ∪ L2, is the set of strings x
such that x ∈ L1 or x ∈ L2.

I The concatenation of L1, L2, denoted L1L2, is the set of
strings xy such that x ∈ L1 and y ∈ L2.

I The Kleene closure of L, denoted L∗, is the set of strings
constructed by concatenating any number of strings from L.
L∗ contains ε, the empty string.

I The positive closure of L, denoted L+, is the same as L∗ but
without ε.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Preliminaries: Operations on Sets of Strings

Let Σ be a finite set of symbols and let Σ∗ be the set of all strings
(including the empty string) over Σ. Suppose L, L1, L2 are subsets
of Σ∗.

I The union of L1, L2, denoted L1 ∪ L2, is the set of strings x
such that x ∈ L1 or x ∈ L2.

I The concatenation of L1, L2, denoted L1L2, is the set of
strings xy such that x ∈ L1 and y ∈ L2.

I The Kleene closure of L, denoted L∗, is the set of strings
constructed by concatenating any number of strings from L.
L∗ contains ε, the empty string.

I The positive closure of L, denoted L+, is the same as L∗ but
without ε.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Preliminaries: Operations on Sets of Strings

Let Σ be a finite set of symbols and let Σ∗ be the set of all strings
(including the empty string) over Σ. Suppose L, L1, L2 are subsets
of Σ∗.

I The union of L1, L2, denoted L1 ∪ L2, is the set of strings x
such that x ∈ L1 or x ∈ L2.

I The concatenation of L1, L2, denoted L1L2, is the set of
strings xy such that x ∈ L1 and y ∈ L2.

I The Kleene closure of L, denoted L∗, is the set of strings
constructed by concatenating any number of strings from L.
L∗ contains ε, the empty string.

I The positive closure of L, denoted L+, is the same as L∗ but
without ε.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Preliminaries: Operations on Sets of Strings

Let Σ be a finite set of symbols and let Σ∗ be the set of all strings
(including the empty string) over Σ. Suppose L, L1, L2 are subsets
of Σ∗.

I The union of L1, L2, denoted L1 ∪ L2, is the set of strings x
such that x ∈ L1 or x ∈ L2.

I The concatenation of L1, L2, denoted L1L2, is the set of
strings xy such that x ∈ L1 and y ∈ L2.

I The Kleene closure of L, denoted L∗, is the set of strings
constructed by concatenating any number of strings from L.
L∗ contains ε, the empty string.

I The positive closure of L, denoted L+, is the same as L∗ but
without ε.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Preliminaries: Operations on Sets of Strings

Let Σ be a finite set of symbols and let Σ∗ be the set of all strings
(including the empty string) over Σ. Suppose L, L1, L2 are subsets
of Σ∗.

I The union of L1, L2, denoted L1 ∪ L2, is the set of strings x
such that x ∈ L1 or x ∈ L2.

I The concatenation of L1, L2, denoted L1L2, is the set of
strings xy such that x ∈ L1 and y ∈ L2.

I The Kleene closure of L, denoted L∗, is the set of strings
constructed by concatenating any number of strings from L.
L∗ contains ε, the empty string.

I The positive closure of L, denoted L+, is the same as L∗ but
without ε.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Examples

Let L1 = {a, b} and L2 = {c}. Then

I L1 ∪ L2 = {a, b, c}
I L1L2 = {ac, bc}
I {a, b}∗ = {ε, a, b, aa, bb, ab, ba, . . .}
I {a, b}+ = {a, b, aa, bb, ab, ba, . . .}

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Formal Definition of Regular Expressions

Regular expressions over a finite alphabet Σ:

1. ε is a regular expression and denotes the set {ε}.
2. For each a in Σ, a is a regular expression and denotes the set

{a}.

3. If r and s are regular expressions denoting the sets R and S
respectively, then

I (r | s) is a regular expression denoting R ∪ S .
I (rs) is a regular expression denoting RS .
I (r∗) is a regular expression denoting R∗.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Formal Definition of Regular Expressions

Regular expressions over a finite alphabet Σ:

1. ε is a regular expression and denotes the set {ε}.

2. For each a in Σ, a is a regular expression and denotes the set
{a}.

3. If r and s are regular expressions denoting the sets R and S
respectively, then

I (r | s) is a regular expression denoting R ∪ S .
I (rs) is a regular expression denoting RS .
I (r∗) is a regular expression denoting R∗.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Formal Definition of Regular Expressions

Regular expressions over a finite alphabet Σ:

1. ε is a regular expression and denotes the set {ε}.
2. For each a in Σ, a is a regular expression and denotes the set

{a}.

3. If r and s are regular expressions denoting the sets R and S
respectively, then

I (r | s) is a regular expression denoting R ∪ S .
I (rs) is a regular expression denoting RS .
I (r∗) is a regular expression denoting R∗.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Formal Definition of Regular Expressions

Regular expressions over a finite alphabet Σ:

1. ε is a regular expression and denotes the set {ε}.
2. For each a in Σ, a is a regular expression and denotes the set

{a}.

3. If r and s are regular expressions denoting the sets R and S
respectively, then

I (r | s) is a regular expression denoting R ∪ S .
I (rs) is a regular expression denoting RS .
I (r∗) is a regular expression denoting R∗.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Recognizers

I A recognizer for a language is a program that takes as input a
string x and answers “yes” if x is a sentence of the language
and “no” otherwise.

I We can think of this program as a machine which only emits
two possible responses to its input.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Finite State Automata

I A Finite State Automaton (FSA) is an abstract finite machine.

I Regular expressions can be viewed as a way to describe a
Finite State Automaton (FSA)

I Kleene’s theorem (1956): FSA and RE describe the same
languages:

I Any regular expression can be implemented as an FSA.
I Any FSA can be described by a regular expression.

I Regular languages are those that can be recognized by FSAs
(or characterized by a regular expression).

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Metacharacters

NB. Different sets of metacharacters and notations used by
different ‘host languages’ (e.g., Unix grep, GNU emacs, Perl, Java,
Python, etc.). Cf. Jurafsky & Martin, Appendix A)

Disjunction: |
Wild card: .

Optionality: ?

Quantification: * and +

Choice: [Mm] [0123456789]

Ranges: [a-z] [0-9]

Negation: [∧Mm] (only when ‘∧’ occurs immediately after ‘[’)

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Special Backslash Sequences

I Standard escape sequences
\t: tab
\n: newline

I Abbreviatory forms
\d: digit (i.e., numeral) \D: non-digit
\s: ‘whitespace’ ([\t\n]) \S: non-whitespace
\w: ‘alphanumeric’ ([a-zA-Z0-9]) \W: non-alphanumeric

I \ is a general escape character; e.g., \. is not a wildcard, but
matches a period, .

I If you want to use \ in a string, it has to be escaped: \\

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Introduction
Formal Background to REs
Extensions of Basic REs

Anchors

(Also: zero-width characters)

I Anchors don’t match strings in the text, instead

I they match positions in the text.
^: matches beginning of line (or text)
$: matches end of line (or text)
\b: matches word boundary (i.e., a location with \w

on one side but not the other)

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Wildcard

>>> from nltk_lite.utilities import re_show
>>> s = ’’’BP has agreed to sell
... it’s petrochemicals unit for $5.1bn.’’’
>>> re_show(’...’, s)
{BP }{has}{ ag}{ree}{d t}{o s}{ell}
{it’}{s p}{etr}{och}{emi}{cal}{s u}{nit}{ fo}{r $}{5.1}{bn.}

>>> re_show(’.a..’, s)
BP {has }agreed to sell
it’s petrochemi{cals} unit for $5.1bn.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Wildcard

>>> from nltk_lite.utilities import re_show
>>> s = ’’’BP has agreed to sell
... it’s petrochemicals unit for $5.1bn.’’’
>>> re_show(’...’, s)
{BP }{has}{ ag}{ree}{d t}{o s}{ell}
{it’}{s p}{etr}{och}{emi}{cal}{s u}{nit}{ fo}{r $}{5.1}{bn.}

>>> re_show(’.a..’, s)
BP {has }agreed to sell
it’s petrochemi{cals} unit for $5.1bn.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Wildcards with Quantifiers

>>> re_show(’s.*l’, s)
BP ha{s agreed to sell}
it’{s petrochemical}s unit for $5.1bn.

>>> re_show(’B.*P’, s)
{BP} has agreed to sell
it’s petrochemicals unit for $5.1bn.

>>> re_show(’B.+P’, s)
BP has agreed to sell
it’s petrochemicals unit for $5.1bn.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Wildcards with Quantifiers

>>> re_show(’s.*l’, s)
BP ha{s agreed to sell}
it’{s petrochemical}s unit for $5.1bn.

>>> re_show(’B.*P’, s)
{BP} has agreed to sell
it’s petrochemicals unit for $5.1bn.

>>> re_show(’B.+P’, s)
BP has agreed to sell
it’s petrochemicals unit for $5.1bn.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Wildcards with Quantifiers

>>> re_show(’s.*l’, s)
BP ha{s agreed to sell}
it’{s petrochemical}s unit for $5.1bn.

>>> re_show(’B.*P’, s)
{BP} has agreed to sell
it’s petrochemicals unit for $5.1bn.

>>> re_show(’B.+P’, s)
BP has agreed to sell
it’s petrochemicals unit for $5.1bn.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Disjunction

>>> re_show(’has|it’, s)
BP {has} agreed to sell
{it}’s petrochemicals un{it} for $5.1bn.

>>> re_show(’has | it’, s)
BP {has }agreed to sell
it’s petrochemicals unit for $5.1bn.

>>> re_show(’(e|l)+’, s)
BP has agr{ee}d to s{ell}
it’s p{e}troch{e}mica{l}s unit for $5.1bn.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Disjunction

>>> re_show(’has|it’, s)
BP {has} agreed to sell
{it}’s petrochemicals un{it} for $5.1bn.

>>> re_show(’has | it’, s)
BP {has }agreed to sell
it’s petrochemicals unit for $5.1bn.

>>> re_show(’(e|l)+’, s)
BP has agr{ee}d to s{ell}
it’s p{e}troch{e}mica{l}s unit for $5.1bn.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Disjunction

>>> re_show(’has|it’, s)
BP {has} agreed to sell
{it}’s petrochemicals un{it} for $5.1bn.

>>> re_show(’has | it’, s)
BP {has }agreed to sell
it’s petrochemicals unit for $5.1bn.

>>> re_show(’(e|l)+’, s)
BP has agr{ee}d to s{ell}
it’s p{e}troch{e}mica{l}s unit for $5.1bn.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Zero Width Characters

>>> re_show(’l’, s)
BP has agreed to se{l}{l}
it’s petrochemica{l}s unit for $5.1bn.

>>> re_show(’l$’, s)
BP has agreed to sel{l}
it’s petrochemicals unit for $5.1bn.

>>> re_show(’i’, s)
BP has agreed to sell
{i}t’s petrochem{i}cals un{i}t for $5.1bn.

>>> re_show(’^i’, s)
BP has agreed to sell
{i}t’s petrochemicals unit for $5.1bn.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Zero Width Characters

>>> re_show(’l’, s)
BP has agreed to se{l}{l}
it’s petrochemica{l}s unit for $5.1bn.

>>> re_show(’l$’, s)
BP has agreed to sel{l}
it’s petrochemicals unit for $5.1bn.

>>> re_show(’i’, s)
BP has agreed to sell
{i}t’s petrochem{i}cals un{i}t for $5.1bn.

>>> re_show(’^i’, s)
BP has agreed to sell
{i}t’s petrochemicals unit for $5.1bn.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Zero Width Characters

>>> re_show(’l’, s)
BP has agreed to se{l}{l}
it’s petrochemica{l}s unit for $5.1bn.

>>> re_show(’l$’, s)
BP has agreed to sel{l}
it’s petrochemicals unit for $5.1bn.

>>> re_show(’i’, s)
BP has agreed to sell
{i}t’s petrochem{i}cals un{i}t for $5.1bn.

>>> re_show(’^i’, s)
BP has agreed to sell
{i}t’s petrochemicals unit for $5.1bn.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Zero Width Characters

>>> re_show(’l’, s)
BP has agreed to se{l}{l}
it’s petrochemica{l}s unit for $5.1bn.

>>> re_show(’l$’, s)
BP has agreed to sel{l}
it’s petrochemicals unit for $5.1bn.

>>> re_show(’i’, s)
BP has agreed to sell
{i}t’s petrochem{i}cals un{i}t for $5.1bn.

>>> re_show(’^i’, s)
BP has agreed to sell
{i}t’s petrochemicals unit for $5.1bn.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Escaping Special Characters

>>> re_show(’.’, s)
{B}{P}{ }{h}{a}{s}{ }{a}{g}{r}{e}{e}{d}...

>>> re_show(’\.’, s)
BP has agreed to sell
it’s petrochemicals unit for $5{.}1bn{.}

>>> re_show(’$’, s)
BP has agreed to sell{}
it’s petrochemicals unit for $5.1bn.{}

>>> re_show(’\$’, s)
BP has agreed to sell
it’s petrochemicals unit for {$}5.1bn.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Escaping Special Characters

>>> re_show(’.’, s)
{B}{P}{ }{h}{a}{s}{ }{a}{g}{r}{e}{e}{d}...

>>> re_show(’\.’, s)
BP has agreed to sell
it’s petrochemicals unit for $5{.}1bn{.}

>>> re_show(’$’, s)
BP has agreed to sell{}
it’s petrochemicals unit for $5.1bn.{}

>>> re_show(’\$’, s)
BP has agreed to sell
it’s petrochemicals unit for {$}5.1bn.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Escaping Special Characters

>>> re_show(’.’, s)
{B}{P}{ }{h}{a}{s}{ }{a}{g}{r}{e}{e}{d}...

>>> re_show(’\.’, s)
BP has agreed to sell
it’s petrochemicals unit for $5{.}1bn{.}

>>> re_show(’$’, s)
BP has agreed to sell{}
it’s petrochemicals unit for $5.1bn.{}

>>> re_show(’\$’, s)
BP has agreed to sell
it’s petrochemicals unit for {$}5.1bn.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Escaping Special Characters

>>> re_show(’.’, s)
{B}{P}{ }{h}{a}{s}{ }{a}{g}{r}{e}{e}{d}...

>>> re_show(’\.’, s)
BP has agreed to sell
it’s petrochemicals unit for $5{.}1bn{.}

>>> re_show(’$’, s)
BP has agreed to sell{}
it’s petrochemicals unit for $5.1bn.{}

>>> re_show(’\$’, s)
BP has agreed to sell
it’s petrochemicals unit for {$}5.1bn.

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Metacharacters and Negated Ranges

>>> re_show(’\w’,s)
{B}{P} {h}{a}{s} {a}{g}{r}{e}{e}{d} ...

>>> re_show(’\d’,s)
BP has agreed to sell
it’s petrochemicals unit for ${5}.{1}bn.

>>> re_show(’[^a-z\s]’,s)
{B}{P} has agreed to sell
it{’}s petrochemicals unit for {$}{5}{.}{1}bn{.}

>>> re_show(’[^\w]’,s)
BP{ }has{ }agreed{ }to{ }sell{
}it{’}s{ }petrochemicals{ }unit{ }for{ }{$}5{.}1bn{.}

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Metacharacters and Negated Ranges

>>> re_show(’\w’,s)
{B}{P} {h}{a}{s} {a}{g}{r}{e}{e}{d} ...

>>> re_show(’\d’,s)
BP has agreed to sell
it’s petrochemicals unit for ${5}.{1}bn.

>>> re_show(’[^a-z\s]’,s)
{B}{P} has agreed to sell
it{’}s petrochemicals unit for {$}{5}{.}{1}bn{.}

>>> re_show(’[^\w]’,s)
BP{ }has{ }agreed{ }to{ }sell{
}it{’}s{ }petrochemicals{ }unit{ }for{ }{$}5{.}1bn{.}

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Metacharacters and Negated Ranges

>>> re_show(’\w’,s)
{B}{P} {h}{a}{s} {a}{g}{r}{e}{e}{d} ...

>>> re_show(’\d’,s)
BP has agreed to sell
it’s petrochemicals unit for ${5}.{1}bn.

>>> re_show(’[^a-z\s]’,s)
{B}{P} has agreed to sell
it{’}s petrochemicals unit for {$}{5}{.}{1}bn{.}

>>> re_show(’[^\w]’,s)
BP{ }has{ }agreed{ }to{ }sell{
}it{’}s{ }petrochemicals{ }unit{ }for{ }{$}5{.}1bn{.}

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Metacharacters and Negated Ranges

>>> re_show(’\w’,s)
{B}{P} {h}{a}{s} {a}{g}{r}{e}{e}{d} ...

>>> re_show(’\d’,s)
BP has agreed to sell
it’s petrochemicals unit for ${5}.{1}bn.

>>> re_show(’[^a-z\s]’,s)
{B}{P} has agreed to sell
it{’}s petrochemicals unit for {$}{5}{.}{1}bn{.}

>>> re_show(’[^\w]’,s)
BP{ }has{ }agreed{ }to{ }sell{
}it{’}s{ }petrochemicals{ }unit{ }for{ }{$}5{.}1bn{.}

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Using REs in Python, 1

I Usually best to compile the RE into a PatternObject; more
efficient, and it can be re-used.

>>> import re
>>> str = ’do you say hello or hullo?’
>>> helloRE = re.compile(’h[eu]llo’)

I The resulting PatternObject has a number of methods:

findall(s): returns a list of all matches of pattern in string s

search(s): searches for leftmost occurrence of pattern in string s

match(s): tries to match pattern at the beginning of string s

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Using REs in Python, 2

I The PatternObject method findall returns a list:

>>> helloRE.findall(str)
[’hello’, ’hullo’]

I The PatternObject method search (and match) returns a
MatchObject or None.

I A MatchObject has a variety of methods, but is not a string.

>>> m = helloRE.search(str)
>>> m
<_sre.SRE_Match object at 0x47b138>
>>> m.group() # return matched substring (sort of!)
’hello’
>>> m.end() # index of end of target
16

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Using REs in Python, 2

I The PatternObject method findall returns a list:

>>> helloRE.findall(str)
[’hello’, ’hullo’]

I The PatternObject method search (and match) returns a
MatchObject or None.

I A MatchObject has a variety of methods, but is not a string.

>>> m = helloRE.search(str)
>>> m
<_sre.SRE_Match object at 0x47b138>
>>> m.group() # return matched substring (sort of!)
’hello’
>>> m.end() # index of end of target
16

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Groups

I Groups in regular expressions are captured using parentheses.

>>> import re
>>> str = ’do you say hello or hullo?’
>>> reGRP = re.compile(’(d.)(.*)(e..)’)
>>> m = reGRP.search(str)
>>> m
<_sre.SRE_Match object at 0x64390>
>>> m.groups()
(’do’, ’ you say h’, ’ell’)

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Named Groups

I Name groups captured using (?P<name>):

FROM = re.compile("""
^From: # Anchor to start of line
\s* # maybe some spaces
(?P<user>\w+) # ’user’: group of word characters
@
(?P<domain> # the ’domain’:
\S+) # some non-space characters
\s # finally, a space character
""",re.VERBOSE)

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Named Groups (cont.)

from nltk_lite.corpus import twenty_newsgroups

for item in twenty_newsgroups.items(’misc.forsale’):
text = twenty_newsgroups.read(item)
m = FROM.search(text)
if m:
print ’%s is at %s’ % \
(m.group(’user’), m.group(’domain’))

kedz is at bigwpi.WPI.EDU
myoakam is at cis.ohio-state.edu
gt1706a is at prism.gatech.EDU
jvinson is at xsoft.xerox.com
hungjenc is at usc.edu
thouchin is at cs.umr.edu
kssimon is at silver.ucs.indiana.edu

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Tokenization with Regular Expressions (1)

I The method tokenize.regexp() takes a string and a regular
expression, and returns the list of substrings that match the
RE

>>> from nltk_lite import tokenize
>>> s = "Hello. Isn’t this fun?"
>>> pat= r’\w+|[^\w\s]+’
>>> list(tokenize.regexp(s, pat))
[’Hello’, ’.’, ’Isn’, "’", ’t’, ’this’, ’fun’, ’?’]

I This is a simple tokenizer that may break up things we want
to keep as a single token:

>>> t = "That poster from the U.S.A. costs $22.50."
>>> list(tokenize.regexp(t, pat))
[’That’, ’poster’, ’from’, ’the’, ’U’, ’.’, ’S’, ’.’,
’A’, ’.’, ’costs’, ’$’, ’22’, ’.’, ’50’, ’.’]

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Tokenization with Regular Expressions (2)

I Add further components to the RE used in the tokenizer:

>>> import re
>>> pat2 = re.compile(r’’’
... \$?\d+(\.\d+)? # currency amounts (eg $22.50)
... | ([A-Z]\.)+ # abbreviations (eg U.S.A.)
... | \w+ # sequences of ’word’ characters
... | [^\w\s]+ # punctuation sequences
... ’’’, re.VERBOSE)
>>> list(tokenize.regexp(t, pat2))
[’That’, ’poster’, ’from’, ’the’, ’U.S.A.’, ’costs’,
’$22.50’, ’.’]

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

Outline
Overview of REs

REs in Python

Examples with re show
Match objects in Python

Reading

I Jurafsky & Martin, Chap 2

I NLTK Lite Tutorial: Regular Expressions available from
http:
//nltk.sourceforge.net/lite/doc/en/regexps.html

Steve Renals s.renals@ed.ac.uk (based on original notes by Ewan Klein)Regular Expressions

http://nltk.sourceforge.net/lite/doc/en/regexps.html
http://nltk.sourceforge.net/lite/doc/en/regexps.html

	Outline
	Overview of REs
	Introduction
	Formal Background to REs
	Extensions of Basic REs

	REs in Python
	Examples with re_show
	Match objects in Python

