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Overview

Goals:

I a basic idea of the formal background for REs

I an ability to write small Python programs that do useful
things with REs
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Motivation

Task: To search for strings using (partially specified)
patterns

Why:

I validate data fields (dates, email addresses,
URLs)

I filter text (spam, disallowed web sites)
I identify particular strings in a text (token

boundaries for tokenization)
I convert the output of one processing component

into the format required for a second component
(rabbit_NN →
<word pos=’’NN’’>rabbit</word>)
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The Basic Idea

I Regular expressions form a language for expressing patterns.

I The language can be stated as a formal algebra.

I Recognizers for RE can be efficiently implemented.

I ‘Regular expression’ also a term for a pattern that is
constructed using the language.

I Every pattern specifies a set of strings.

I Text string: a sequence of letters, numerals, spaces, tabs,
punctuation, . . .
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Initital Examples

Pattern Matches

concatenation abc abc

disjunction a | b a, b
(a | bb) d ad, bbd

closure a* ε, a, aa, aaa, aaaa, . . .
c(a | bb)* c, ca, cbb, cabb, caa, cbbbb, . . .
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Two Types of RE

Literals Every normal text character is an RE, and denotes
itself.

Metacharacters Special characters which allow you to specify
various sets of strings.

Example—Kleene star (*)

I a denotes a

I a* denotes ε (empty string), a, aa, aaa, . . .
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Preliminaries: Operations on Sets of Strings

Let Σ be a finite set of symbols and let Σ∗ be the set of all strings
(including the empty string) over Σ. Suppose L, L1, L2 are subsets
of Σ∗.

I The union of L1, L2, denoted L1 ∪ L2, is the set of strings x
such that x ∈ L1 or x ∈ L2.

I The concatenation of L1, L2, denoted L1L2, is the set of
strings xy such that x ∈ L1 and y ∈ L2.

I The Kleene closure of L, denoted L∗, is the set of strings
constructed by concatenating any number of strings from L.
L∗ contains ε, the empty string.

I The positive closure of L, denoted L+, is the same as L∗ but
without ε.
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Examples

Let L1 = {a, b} and L2 = {c}. Then

I L1 ∪ L2 = {a, b, c}
I L1L2 = {ac, bc}
I {a, b}∗ = {ε, a, b, aa, bb, ab, ba, . . .}
I {a, b}+ = {a, b, aa, bb, ab, ba, . . .}
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Formal Definition of Regular Expressions

Regular expressions over a finite alphabet Σ:

1. ε is a regular expression and denotes the set {ε}.
2. For each a in Σ, a is a regular expression and denotes the set

{a}.

3. If r and s are regular expressions denoting the sets R and S
respectively, then

I (r | s) is a regular expression denoting R ∪ S .
I (rs) is a regular expression denoting RS .
I (r∗) is a regular expression denoting R∗.
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Recognizers

I A recognizer for a language is a program that takes as input a
string x and answers “yes” if x is a sentence of the language
and “no” otherwise.

I We can think of this program as a machine which only emits
two possible responses to its input.
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Finite State Automata

I A Finite State Automaton (FSA) is an abstract finite machine.

I Regular expressions can be viewed as a way to describe a
Finite State Automaton (FSA)

I Kleene’s theorem (1956): FSA and RE describe the same
languages:

I Any regular expression can be implemented as an FSA.
I Any FSA can be described by a regular expression.

I Regular languages are those that can be recognized by FSAs
(or characterized by a regular expression).
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Metacharacters

NB. Different sets of metacharacters and notations used by
different ‘host languages’ (e.g., Unix grep, GNU emacs, Perl, Java,
Python, etc.). Cf. Jurafsky & Martin, Appendix A)

Disjunction: |
Wild card: .

Optionality: ?

Quantification: * and +

Choice: [Mm] [0123456789]

Ranges: [a-z] [0-9]

Negation: [∧Mm] (only when ‘∧’ occurs immediately after ‘[’)
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Special Backslash Sequences

I Standard escape sequences
\t: tab
\n: newline

I Abbreviatory forms
\d: digit (i.e., numeral) \D: non-digit
\s: ‘whitespace’ ([ \t\n]) \S: non-whitespace
\w: ‘alphanumeric’ ([a-zA-Z0-9]) \W: non-alphanumeric

I \ is a general escape character; e.g., \. is not a wildcard, but
matches a period, .

I If you want to use \ in a string, it has to be escaped: \\
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Anchors

(Also: zero-width characters)

I Anchors don’t match strings in the text, instead

I they match positions in the text.
^: matches beginning of line (or text)
$: matches end of line (or text)
\b: matches word boundary (i.e., a location with \w

on one side but not the other)
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Wildcard

>>> from nltk_lite.utilities import re_show
>>> s = ’’’BP has agreed to sell
... it’s petrochemicals unit for $5.1bn.’’’
>>> re_show(’...’, s)
{BP }{has}{ ag}{ree}{d t}{o s}{ell}
{it’}{s p}{etr}{och}{emi}{cal}{s u}{nit}{ fo}{r $}{5.1}{bn.}

>>> re_show(’.a..’, s)
BP {has }agreed to sell
it’s petrochemi{cals} unit for $5.1bn.
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Wildcards with Quantifiers

>>> re_show(’s.*l’, s)
BP ha{s agreed to sell}
it’{s petrochemical}s unit for $5.1bn.

>>> re_show(’B.*P’, s)
{BP} has agreed to sell
it’s petrochemicals unit for $5.1bn.

>>> re_show(’B.+P’, s)
BP has agreed to sell
it’s petrochemicals unit for $5.1bn.
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Disjunction

>>> re_show(’has|it’, s)
BP {has} agreed to sell
{it}’s petrochemicals un{it} for $5.1bn.

>>> re_show(’has | it’, s)
BP {has }agreed to sell
it’s petrochemicals unit for $5.1bn.

>>> re_show(’(e|l)+’, s)
BP has agr{ee}d to s{ell}
it’s p{e}troch{e}mica{l}s unit for $5.1bn.
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>>> re_show(’l’, s)
BP has agreed to se{l}{l}
it’s petrochemica{l}s unit for $5.1bn.

>>> re_show(’l$’, s)
BP has agreed to sel{l}
it’s petrochemicals unit for $5.1bn.

>>> re_show(’i’, s)
BP has agreed to sell
{i}t’s petrochem{i}cals un{i}t for $5.1bn.

>>> re_show(’^i’, s)
BP has agreed to sell
{i}t’s petrochemicals unit for $5.1bn.
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>>> re_show(’.’, s)
{B}{P}{ }{h}{a}{s}{ }{a}{g}{r}{e}{e}{d}...

>>> re_show(’\.’, s)
BP has agreed to sell
it’s petrochemicals unit for $5{.}1bn{.}

>>> re_show(’$’, s)
BP has agreed to sell{}
it’s petrochemicals unit for $5.1bn.{}

>>> re_show(’\$’, s)
BP has agreed to sell
it’s petrochemicals unit for {$}5.1bn.
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>>> re_show(’\w’,s)
{B}{P} {h}{a}{s} {a}{g}{r}{e}{e}{d} ...

>>> re_show(’\d’,s)
BP has agreed to sell
it’s petrochemicals unit for ${5}.{1}bn.

>>> re_show(’[^a-z\s]’,s)
{B}{P} has agreed to sell
it{’}s petrochemicals unit for {$}{5}{.}{1}bn{.}

>>> re_show(’[^\w]’,s)
BP{ }has{ }agreed{ }to{ }sell{
}it{’}s{ }petrochemicals{ }unit{ }for{ }{$}5{.}1bn{.}
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>>> re_show(’[^\w]’,s)
BP{ }has{ }agreed{ }to{ }sell{
}it{’}s{ }petrochemicals{ }unit{ }for{ }{$}5{.}1bn{.}
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Using REs in Python, 1

I Usually best to compile the RE into a PatternObject; more
efficient, and it can be re-used.

>>> import re
>>> str = ’do you say hello or hullo?’
>>> helloRE = re.compile(’h[eu]llo’)

I The resulting PatternObject has a number of methods:

findall(s): returns a list of all matches of pattern in string s

search(s): searches for leftmost occurrence of pattern in string s

match(s): tries to match pattern at the beginning of string s
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Using REs in Python, 2

I The PatternObject method findall returns a list:

>>> helloRE.findall(str)
[’hello’, ’hullo’]

I The PatternObject method search (and match) returns a
MatchObject or None.

I A MatchObject has a variety of methods, but is not a string.

>>> m = helloRE.search(str)
>>> m
<_sre.SRE_Match object at 0x47b138>
>>> m.group() # return matched substring (sort of!)
’hello’
>>> m.end() # index of end of target
16
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Groups

I Groups in regular expressions are captured using parentheses.

>>> import re
>>> str = ’do you say hello or hullo?’
>>> reGRP = re.compile(’(d.)(.*)(e..)’)
>>> m = reGRP.search(str)
>>> m
<_sre.SRE_Match object at 0x64390>
>>> m.groups()
(’do’, ’ you say h’, ’ell’)
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Named Groups

I Name groups captured using (?P<name>):

FROM = re.compile("""
^From: # Anchor to start of line
\s* # maybe some spaces
(?P<user>\w+) # ’user’: group of word characters
@
(?P<domain> # the ’domain’:
\S+) # some non-space characters
\s # finally, a space character
""",re.VERBOSE)
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Named Groups (cont.)

from nltk_lite.corpus import twenty_newsgroups

for item in twenty_newsgroups.items(’misc.forsale’):
text = twenty_newsgroups.read(item)
m = FROM.search(text)
if m:
print ’%s is at %s’ % \
(m.group(’user’), m.group(’domain’))

kedz is at bigwpi.WPI.EDU
myoakam is at cis.ohio-state.edu
gt1706a is at prism.gatech.EDU
jvinson is at xsoft.xerox.com
hungjenc is at usc.edu
thouchin is at cs.umr.edu
kssimon is at silver.ucs.indiana.edu
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Tokenization with Regular Expressions (1)

I The method tokenize.regexp() takes a string and a regular
expression, and returns the list of substrings that match the
RE

>>> from nltk_lite import tokenize
>>> s = "Hello. Isn’t this fun?"
>>> pat= r’\w+|[^\w\s]+’
>>> list(tokenize.regexp(s, pat))
[’Hello’, ’.’, ’Isn’, "’", ’t’, ’this’, ’fun’, ’?’]

I This is a simple tokenizer that may break up things we want
to keep as a single token:

>>> t = "That poster from the U.S.A. costs $22.50."
>>> list(tokenize.regexp(t, pat))
[’That’, ’poster’, ’from’, ’the’, ’U’, ’.’, ’S’, ’.’,
’A’, ’.’, ’costs’, ’$’, ’22’, ’.’, ’50’, ’.’]
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Tokenization with Regular Expressions (2)

I Add further components to the RE used in the tokenizer:

>>> import re
>>> pat2 = re.compile(r’’’
... \$?\d+(\.\d+)? # currency amounts (eg $22.50)
... | ([A-Z]\.)+ # abbreviations (eg U.S.A.)
... | \w+ # sequences of ’word’ characters
... | [^\w\s]+ # punctuation sequences
... ’’’, re.VERBOSE)
>>> list(tokenize.regexp(t, pat2))
[’That’, ’poster’, ’from’, ’the’, ’U.S.A.’, ’costs’,
’$22.50’, ’.’]
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Reading

I Jurafsky & Martin, Chap 2

I NLTK Lite Tutorial: Regular Expressions available from
http:
//nltk.sourceforge.net/lite/doc/en/regexps.html
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