Introduction to Programming in Python (3)

Steve Renals
s.renals@ed.ac.uk

ICL — 2 October 2005

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



NLTK: Python Natural Language ToolKit

» NLTK is a set of Python modules which you can import into
your programs, eg:

from nltk_lite.utilities import re_show

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



NLTK

NLTK: Python Natural Language ToolKit

» NLTK is a set of Python modules which you can import into
your programs, eg:
from nltk_lite.utilities import re_show

» NLTK is distributed with several corpora (singular: corpus). A
corpus is a body of text (or other language data, eg speech).

» Example corpora with NLTK: gutenberg (works of literature
from project Gutenberg), treebank (parsed text from the
(part of) the Penn treebank), brown (the first million word,
PoS-tagged corpus — 1961!)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



NLTK:

>

Python Natural Language ToolKit

NLTK is a set of Python modules which you can import into
your programs, eg:

from nltk_lite.utilities import re_show

NLTK is distributed with several corpora (singular: corpus). A
corpus is a body of text (or other language data, eg speech).
Example corpora with NLTK: gutenberg (works of literature
from project Gutenberg), treebank (parsed text from the
(part of) the Penn treebank), brown (the first million word,
PoS-tagged corpus — 1961!)

Load a corpus (eg gutenberg) using:

>>> from nltk_lite.corpora import gutenberg

>>> print gutenberg.items

[’austen-emma’, ’austen-persuasion’, ’austen-sense’, ’t

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Simple corpus operations

» Simple processing of a corpus includes tokenization (splitting
the text into word tokens), text normalization (eg by case),
then many possible operations such as obtaining word
statistics, tagging and parsing

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Simple corpus operations

» Simple processing of a corpus includes tokenization (splitting

the text into word tokens), text normalization (eg by case),
then many possible operations such as obtaining word
statistics, tagging and parsing

Count the number of words in “Macbeth”

from nltk_lite.corpora import gutenberg

nwords = 0

#iterate over all word tokens in Macbeth
for word in gutenberg.raw(’shakespeare-macbeth’):
nwords += 1
print nwords # 23939

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Simple corpus operations

» Simple processing of a corpus includes tokenization (splitting

the text into word tokens), text normalization (eg by case),
then many possible operations such as obtaining word
statistics, tagging and parsing

Count the number of words in “Macbeth”

from nltk_lite.corpora import gutenberg

nwords = 0

#iterate over all word tokens in Macbeth
for word in gutenberg.raw(’shakespeare-macbeth’):

nwords += 1
print nwords # 23939
gutenberg.raw(<textname>) is an iterator, which behaves
like a sequence (eg a list) except it returns elements one at a
time as requested

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Richer corpora

» The Gutenberg corpus is tokenized as a sequence of words,
with no further structure.

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Richer corpora

>

| 2

The Gutenberg corpus is tokenized as a sequence of words,
with no further structure.

The Brown corpus has sentences marked, and is stored as a
list of sentences, where a sentence is a list of word tokens. We
can use the extract function to obtain individual sentences

from nltk_lite.corpora import brown
from nltk_lite.corpora import extract

firstSentence = extract(0, brown.raw(’a’))

# [’The’, ’Fulton’, ’County’, ’Grand’, ’Jury’, ’said’, ’Frid

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Richer corpora

>

| 2

The Gutenberg corpus is tokenized as a sequence of words,
with no further structure.

The Brown corpus has sentences marked, and is stored as a
list of sentences, where a sentence is a list of word tokens. We
can use the extract function to obtain individual sentences

from nltk_lite.corpora import brown
from nltk_lite.corpora import extract

firstSentence = extract(0, brown.raw(’a’))
# [’The’, ’Fulton’, ’County’, ’Grand’, ’Jury’, ’said’, ’Frid
Part-of-speech tagged text can also be extracted:

taggedFirstSentence = extract(0, brown.tagged(’a’))

# [(°The’, ’at’), (°Fulton’, ’np-tl’), (’County’, ’nn-tl’),

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Parsed text
Parsed text from the Penn treebank can also be accessed:

>>> from nltk_lite.corpora import treebank
>>> parsedSent = extract(0, treebank.parsed())
>>> print parsedSent

(S:
(NP-SBJ:
(NP: (NNP: ’Pierre’) (NNP: ’Vinken’))
G: 7,
(ADJP: (NP: (CD: ’61’) (NNS: ’years’)) (JJ: ’0ld’))
G:2,7)
(VP:
(MD: ’will’)
(VP:
(VB: ’join’)
(NP: (DT: ’the’) (NN: ’board’))
(PP-CLR:
(IN: ’as’)

(NP: (DT: ’a’) (JJ: ’nonexecutive’) (NN: ’director’)))

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Count the frequency of each word in Macbeth

from nltk_lite.corpora import gutenberg
count = {} # initialize dictionary

for word in gutenberg.raw(’shakespeare-macbeth’):

word = word.lower () # normalize case

if word not in count: # previously unseen word?
count [word] = 0 # if so set count to O

count [word] += 1 # increment word count

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Count the frequency of each word in Macbeth

from nltk_lite.corpora import gutenberg
count = {} # initialize dictionary

for word in gutenberg.raw(’shakespeare-macbeth’):

word = word.lower () # normalize case

if word not in count: # previously unseen word?
count [word] = 0 # if so set count to O

count [word] += 1 # increment word count

We can inspect the dictionary:

print count[’scotland’] # 12
print count[’thane’] # 25
print count[’blood’] # 24
print count[’duncan’] # 10

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Sorting by frequency

We would like to sort the dictionary by frequency, but:

> If we just sort the values (count.values()) we lose the link
to the keys

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Sorting by frequency

We would like to sort the dictionary by frequency, but:

> If we just sort the values (count.values()) we lose the link
to the keys

> count.items() returns a list of the pairs, but naively sorting
that list doesn’t do what we want:

wordfreq = count.items()
wordfreq.sort () # WRONG! - sorted by word!

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Sorting by frequency

We would like to sort the dictionary by frequency, but:
> If we just sort the values (count.values()) we lose the link
to the keys

> count.items() returns a list of the pairs, but naively sorting
that list doesn’'t do what we want:

wordfreq = count.items()
wordfreq.sort () # WRONG! - sorted by word!

We will show five different ways of doing this right in Python...

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Sorting by word frequency (1)

One way to do it:

wordfreq = count.items()
res = []
for wf in wordfreq:
res.append ((wf[1], wf[0]))

res.sort()
res.reverse()
print res[:10]

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Sorting by word frequency (2)

slightly less clunky

wordfreq = count.items()
res = []

#for wf in wordfreq:
# res.append((wf [1], wf[0]))

# explicitly assign to elements of a tuple
for (w, f) in wordfreq:
res.append ((f, w))

res.sort()
res.reverse()

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Sorting by word frequency (3)

Could even use a list comprehension:

wordfreq = count.items()

#res = []
#for (w, f) in wordfreq:
# res.append((f, w))

# use a list comprehension instead
res = [(f, w) for (w, f) in wordfreq]

res.sort()
res.reverse()

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Sorting by word frequency (4)

» The sort function uses a comparator function cmp (x,y)
which returns negative if x<y, zero if x==y, positive if x>y.

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Sorting by word frequency (4)

» The sort function uses a comparator function cmp (x,y)
which returns negative if x<y, zero if x==y, positive if x>y.

» You can define your own comparator which sorts on the
secoond element of each item, and sorts with biggest first:

def mycmp(sl, s2):
return cmp(s2[1], s1[1])

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Sorting by word frequency (4)

» The sort function uses a comparator function cmp (x,y)
which returns negative if x<y, zero if x==y, positive if x>y.

» You can define your own comparator which sorts on the
secoond element of each item, and sorts with biggest first:
def mycmp(sl, s2):

return cmp(s2[1], s1[1])

» Making sorting by word frequency straightforward:

wordfreq = count.items()

wordfreq.sort (mycmp)
print wordfreql[:10]

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Sorting by word frequency (5)

Finally, can even use an anonymous comparator function:

wordfreq = count.items()
wordfreq.sort(lambda s1, s2: cmp(s2[1], s1[1]))
print wordfreql[:10]

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Regular Expressions

Regular expressions in Python

» The Python regular expression module re can be used for
matching, substituting and searching within strings:

>>> import re

>>> from nltk_lite.utilities import re_show

>>> s = "Introduction to Computational Linguistics"
>>> re_show (’i’, s)

Introduct{i}on to Computat{i}onal L{i}ngu{il}st{il}cs
>>> re_show(’tion’, s)

Introduc{tion} to Computaf{tion}al Linguistics

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Regular Expressions

Regular expressions in Python

» The Python regular expression module re can be used for
matching, substituting and searching within strings:
>>> import re
>>> from nltk_lite.utilities import re_show
>>> s = "Introduction to Computational Linguistics"
>>> re_show (’i’, s)
Introduct{i}on to Computat{i}onal L{i}ngu{il}st{il}cs
>>> re_show(’tion’, s)
Introduc{tion} to Computaf{tion}al Linguistics

» We can perform a substitution with re.sub

t = re.sub(’tion’, ’XX’, s)
# t = ’IntroducXX to ComputaXXal Linguistics’

Remember strings are immutable; re.sub returns a new string

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Regular Expressions

Disjunction in regular expressions

We can look for one string or another

u = re.findall(’ (tilc)’, s)
# u= [’c’, ’ti’, ’c’, ’ti’, ’ti’, ’c’]

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Regular Expressions

Disjunction in regular expressions

We can look for one string or another

u = re.findall(’ (tilc)’, s)
# u= [’c’, ’ti’, ’c’, ’ti’, ’ti’, ’c’]

Or we can disjoin characters, eg [aeiou] matches any of a, e, i, o
or u (vowels), and [“aeiou] matches anything that is not a vowel.
So we can match sequences finding non-vowels followed by vowels:

v = re.findall(’ [aeiouAEIOU] [TaeiouAEIOU]’, s)
# v =[’In’, ’0d’, ’uc’, ’on’, ’o0 ’, ’om’, ’ut’, ’at’, ’on’, ’al’

More on regular expressions next week.

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Classes

(A brief introduction to) Classes in Python

» Classes are general data structures containing

» Attributes — Data: components, parts, properties, etc.
» Methods — operations that can be performed on the data

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Classes

(A brief introduction to) Classes in Python

» Classes are general data structures containing
» Attributes — Data: components, parts, properties, etc.

>

» The

>
>

Methods — operations that can be performed on the data
Python class system handles this

Define a class using statement class

Attributes are defined when first assigned - no need to declare
in advanced

All methods have a first parameter that corresponds to the
object, named (by convention) self

Special methods: __init__ is called when the object is
created; __str__ is called when a print statement is called

on the object

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Classes

Example Person class

class Person:
def __init__(self, givenName, familyName):
self.givenName = givenName
self.familyName = familyName

def fullName(self):
return self.givenName + ’ ’ + self.familyName

def __str__(self):
return ’<Person: givenName=’ + self.givenName +
> familyName=’ + self.familyName

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Classes

Creating a Person object

>>> from Person import *

>>> p = Person(’Steve’, ’Renals’)

>>> print p

<Person: givenName=Steve familyName=Renals>
>>> p.fullName ()

’Steve Renals’

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Classes

Creating a Person object

>>> from Person import *

>>> p = Person(’Steve’, ’Renals’)

>>> print p

<Person: givenName=Steve familyName=Renals>
>>> p.fullName ()

’Steve Renals’

>>> p.address=(’Buccleuch Place’)>

>> print p

<Person: givenName=Steve familyName=Renals>
>>> p.address

’Buccleuch Place’

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Classes

Creating a Person object

>>> from Person import *

>>> p = Person(’Steve’, ’Renals’)

>>> print p

<Person: givenName=Steve familyName=Renals>
>>> p.fullName ()

’Steve Renals’

>>> p.address=(’Buccleuch Place’)>

>> print p

<Person: givenName=Steve familyName=Renals>
>>> p.address

’Buccleuch Place’

>>> p.age
Traceback (most recent call last):

File "<stdin>", line 1, in 7
AttributeError: Person instance has no attribute ’age’

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Classes

Inheritance

Classes can inherit from a superclass:

class Student(Person):
def __init__(self, givenName, familyName, num):
Person.__init__(self, givenName, familyName)
self .matricNumber = num

def __str__(self):

return ’<Student:’ + Person.__str__(self) +
>’ matricNumber=’ + str(self.matricNumber) + ’>’

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Classes

Creating a Student object

>>> from Person import *

>>> s = Student(’Steve’, ’Renals’, 123456)

>>> print s

<Student:<Person: givenName=Steve familyName=Renals> matri
>>> s.matricNumber

123456

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



Summary

Summary

» The NLTK toolkit
» Accessing (raw / tagged / parsed) corpora from NLTK
» Five ways to sort words by corpus frequency

» Brief introduction to classes in Python

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (3)



	Outline
	NLTK
	Regular Expressions
	Classes
	Summary

