
Outline
Control Flow

Functions
Summary

Introduction to Programming in Python (2)

Steve Renals
s.renals@ed.ac.uk

ICL — 28 September 2005

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Dictionaries

Dictionaries

Dictionaries are

I Addressed by key, not by offset

I Unordered collections of arbitrary objects

I Variable length, heterogenous (can contain any type of
object), nestable

I Mutable (can change the elements, unlike strings)

I Think of dictionaries as a set of key:value pairs

I Use a key to access its value

(Learning Python, chapter 7)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Dictionaries

Dictionaries

Dictionaries are

I Addressed by key, not by offset

I Unordered collections of arbitrary objects

I Variable length, heterogenous (can contain any type of
object), nestable

I Mutable (can change the elements, unlike strings)

I Think of dictionaries as a set of key:value pairs

I Use a key to access its value

(Learning Python, chapter 7)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Dictionaries

Dictionary example

level = {’icl’ : 9, ’pmr’ : 11, ’inf2b’ : 8}

x = level[’pmr’] # 11

n = len(level) # 3

flag = level.has key(’inf2b’) # True

l = level.keys() # [’inf2b’, ’pmr’, ’icl’]

level[’dil’] = 11 # {’dil’: 11, ’inf2b’: 8, ’pmr’: 11, ’icl’: 9}

level[’icl’] = 10 # {’dil’: 11, ’inf2b’: 8, ’pmr’: 11, ’icl’: 10}

l = level.items() # [(’dil’, 11), (’inf2b’, 8), (’pmr’, 11), (’icl’,

10)]

l = level.values() # [11, 11, 8, 10]

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Dictionaries

Notes on dictionaries

I Sequence operations don’t work: dictionaries are mappings,
not sequences

I Dictionaries have a set of keys: only one value per key

I Assigning to a new key adds an entry

I Keys can be any immutable object, not just strings

I Dictionaries can be used as “records”

I Dictionaries can be used for sparse matrices

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Dictionaries

Notes on dictionaries

I Sequence operations don’t work: dictionaries are mappings,
not sequences

I Dictionaries have a set of keys: only one value per key

I Assigning to a new key adds an entry

I Keys can be any immutable object, not just strings

I Dictionaries can be used as “records”

I Dictionaries can be used for sparse matrices

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Dictionaries

Tuples and files
Tuples: like lists, but immutable (cannot be changed)

emptyT = ()
T1 = (1, 2, 3)
x = T1[1]
n = len(T1)

Files: objects with methods for reading and writing to files

fil = open(’myfile’, ’w’)
fil.write(’hello file\n’)
fil.close()

f2 = open(’myfile’, ’r’)
s = f2.readline() # ’hello file\n’
t = f2.readline() # ’’

(Learning Python, chapter 7)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Dictionaries

Tuples and files
Tuples: like lists, but immutable (cannot be changed)

emptyT = ()
T1 = (1, 2, 3)
x = T1[1]
n = len(T1)

Files: objects with methods for reading and writing to files

fil = open(’myfile’, ’w’)
fil.write(’hello file\n’)
fil.close()

f2 = open(’myfile’, ’r’)
s = f2.readline() # ’hello file\n’
t = f2.readline() # ’’

(Learning Python, chapter 7)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Dictionaries

Tuples and files
Tuples: like lists, but immutable (cannot be changed)

emptyT = ()
T1 = (1, 2, 3)
x = T1[1]
n = len(T1)

Files: objects with methods for reading and writing to files

fil = open(’myfile’, ’w’)
fil.write(’hello file\n’)
fil.close()

f2 = open(’myfile’, ’r’)
s = f2.readline() # ’hello file\n’
t = f2.readline() # ’’

(Learning Python, chapter 7)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Dictionaries

Tuples and files
Tuples: like lists, but immutable (cannot be changed)

emptyT = ()
T1 = (1, 2, 3)
x = T1[1]
n = len(T1)

Files: objects with methods for reading and writing to files

fil = open(’myfile’, ’w’)
fil.write(’hello file\n’)
fil.close()

f2 = open(’myfile’, ’r’)
s = f2.readline() # ’hello file\n’
t = f2.readline() # ’’

(Learning Python, chapter 7)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Dictionaries

Tuples and files
Tuples: like lists, but immutable (cannot be changed)

emptyT = ()
T1 = (1, 2, 3)
x = T1[1]
n = len(T1)

Files: objects with methods for reading and writing to files

fil = open(’myfile’, ’w’)
fil.write(’hello file\n’)
fil.close()

f2 = open(’myfile’, ’r’)
s = f2.readline() # ’hello file\n’
t = f2.readline() # ’’

(Learning Python, chapter 7)
Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Conditionals
Loops

if tests

course = ’icl’
if course == ’icl’:

print ’Miles / Steve’
print ’Semester 1’

elif course == ’dil’:
print ’Phillip’
print ’Semester 2’

else:
print ’Someone else’
print ’Some semester’

I Indentation determines the block structure
I Indentation enforces readability
I Tests after if and elif can be anything that returns

True/False

(Learning Python, chapter 9)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Conditionals
Loops

if tests

course = ’icl’
if course == ’icl’:

print ’Miles / Steve’
print ’Semester 1’

elif course == ’dil’:
print ’Phillip’
print ’Semester 2’

else:
print ’Someone else’
print ’Some semester’

I Indentation determines the block structure
I Indentation enforces readability
I Tests after if and elif can be anything that returns

True/False

(Learning Python, chapter 9)
Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Conditionals
Loops

while loops

A while loop keeps iterating while the test at the top remains True.

a = 0
b = 10
while a < b:

print a
a = a + 1

s = ’icl’
while len(s) > 0:

print s
s = s[1:]

(Learning Python, chapter 10)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Conditionals
Loops

while loops

A while loop keeps iterating while the test at the top remains True.

a = 0
b = 10
while a < b:

print a
a = a + 1

s = ’icl’
while len(s) > 0:

print s
s = s[1:]

(Learning Python, chapter 10)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Conditionals
Loops

for loops
for is used to step through any sequence object

l = [’a’, ’b’, ’c’]
for i in l:

print i

sum = 0
for x in [1, 2, 3, 4, 5, 6]:

sum = sum + x
print sum

range() is a useful function:

range(5) = [0, 1, 2, 3, 4]
range(2, 5) = [2, 3, 4]
range(0, 6, 2) = [0, 2, 4]

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Conditionals
Loops

for loops
for is used to step through any sequence object

l = [’a’, ’b’, ’c’]
for i in l:

print i

sum = 0
for x in [1, 2, 3, 4, 5, 6]:

sum = sum + x
print sum

range() is a useful function:

range(5) = [0, 1, 2, 3, 4]
range(2, 5) = [2, 3, 4]
range(0, 6, 2) = [0, 2, 4]

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Conditionals
Loops

for loops
for is used to step through any sequence object

l = [’a’, ’b’, ’c’]
for i in l:

print i

sum = 0
for x in [1, 2, 3, 4, 5, 6]:

sum = sum + x
print sum

range() is a useful function:

range(5) = [0, 1, 2, 3, 4]
range(2, 5) = [2, 3, 4]
range(0, 6, 2) = [0, 2, 4]

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Conditionals
Loops

for loops with style
Do something to each item in a list (eg print its square)

l = [1, 2, 3, 4, 5, 6, 7, 8] # or l = range(1,9)

one way to print the square
for x in l:

print x*x

another way to do it
n = len(l)
for i in range(l):

print l[i]*l[i]

Which is better?
The top one... Iterate directly over the sequence, try to avoid
using counter-based loops...

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Conditionals
Loops

for loops with style
Do something to each item in a list (eg print its square)

l = [1, 2, 3, 4, 5, 6, 7, 8] # or l = range(1,9)

one way to print the square
for x in l:

print x*x

another way to do it
n = len(l)
for i in range(l):

print l[i]*l[i]

Which is better?
The top one... Iterate directly over the sequence, try to avoid
using counter-based loops...

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Conditionals
Loops

for loops with style
Do something to each item in a list (eg print its square)

l = [1, 2, 3, 4, 5, 6, 7, 8] # or l = range(1,9)

one way to print the square
for x in l:

print x*x

another way to do it
n = len(l)
for i in range(l):

print l[i]*l[i]

Which is better?

The top one... Iterate directly over the sequence, try to avoid
using counter-based loops...

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Conditionals
Loops

for loops with style
Do something to each item in a list (eg print its square)

l = [1, 2, 3, 4, 5, 6, 7, 8] # or l = range(1,9)

one way to print the square
for x in l:

print x*x

another way to do it
n = len(l)
for i in range(l):

print l[i]*l[i]

Which is better?
The top one... Iterate directly over the sequence, try to avoid
using counter-based loops...

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Conditionals
Loops

Example: intersecting sequences
The intersection of
[’a’, ’d’, ’f’, ’g’] and [’a’, ’b’, ’c’, ’d’]
is [’a’, ’d’]

l1 = [’a’, ’d’, ’f’, ’g’]
l2 = [’a’, ’b’, ’c’, ’d’]
res = []
for x in l1:

for y in l2:
if x == y:

res.append(x)

res = []
for x in l1:

if x in l2:
res.append(x)

res = [’a’, ’d’]

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Conditionals
Loops

Example: intersecting sequences
The intersection of
[’a’, ’d’, ’f’, ’g’] and [’a’, ’b’, ’c’, ’d’]
is [’a’, ’d’]

l1 = [’a’, ’d’, ’f’, ’g’]
l2 = [’a’, ’b’, ’c’, ’d’]
res = []
for x in l1:

for y in l2:
if x == y:

res.append(x)

res = []
for x in l1:

if x in l2:
res.append(x)

res = [’a’, ’d’]

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Conditionals
Loops

Example: intersecting sequences
The intersection of
[’a’, ’d’, ’f’, ’g’] and [’a’, ’b’, ’c’, ’d’]
is [’a’, ’d’]

l1 = [’a’, ’d’, ’f’, ’g’]
l2 = [’a’, ’b’, ’c’, ’d’]
res = []
for x in l1:

for y in l2:
if x == y:

res.append(x)

res = []
for x in l1:

if x in l2:
res.append(x)

res = [’a’, ’d’]

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Built-in, imported and user-defined functions
I Some functions are built-in, eg:

l = len([’a’, ’b’, ’c’])

I Some functions may be imported, eg:

import math
from os import getcwd
print getcwd() # which directory am I in?
x = math.sqrt(9) # 3

I Some functions are user-defined, eg:

def multiply(a, b):
return a * b

print multiply(4, 5)
print multiply(’-’, 5)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Built-in, imported and user-defined functions
I Some functions are built-in, eg:

l = len([’a’, ’b’, ’c’])

I Some functions may be imported, eg:

import math
from os import getcwd
print getcwd() # which directory am I in?
x = math.sqrt(9) # 3

I Some functions are user-defined, eg:

def multiply(a, b):
return a * b

print multiply(4, 5)
print multiply(’-’, 5)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Built-in, imported and user-defined functions
I Some functions are built-in, eg:

l = len([’a’, ’b’, ’c’])

I Some functions may be imported, eg:

import math
from os import getcwd
print getcwd() # which directory am I in?
x = math.sqrt(9) # 3

I Some functions are user-defined, eg:

def multiply(a, b):
return a * b

print multiply(4, 5)
print multiply(’-’, 5)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Functions in Python

I Functions are a way to group a set of statements that can be
run more than once in a program.

I They can take parameters as inputs, and can return a value as
output

I Example

def square(x): # create and assign function
return x*x

y = square(5) # y gets assigned the value 25

I def creates a function object, and assigns it to a name
(square in this case)

I return sends an object back to the caller

I Adding () after the functions name calls the function

(Learning Python, chapter 12)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Functions in Python

I Functions are a way to group a set of statements that can be
run more than once in a program.

I They can take parameters as inputs, and can return a value as
output

I Example

def square(x): # create and assign function
return x*x

y = square(5) # y gets assigned the value 25

I def creates a function object, and assigns it to a name
(square in this case)

I return sends an object back to the caller

I Adding () after the functions name calls the function

(Learning Python, chapter 12)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Functions in Python

I Functions are a way to group a set of statements that can be
run more than once in a program.

I They can take parameters as inputs, and can return a value as
output

I Example

def square(x): # create and assign function
return x*x

y = square(5) # y gets assigned the value 25

I def creates a function object, and assigns it to a name
(square in this case)

I return sends an object back to the caller

I Adding () after the functions name calls the function

(Learning Python, chapter 12)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Functions in Python

I Functions are a way to group a set of statements that can be
run more than once in a program.

I They can take parameters as inputs, and can return a value as
output

I Example

def square(x): # create and assign function
return x*x

y = square(5) # y gets assigned the value 25

I def creates a function object, and assigns it to a name
(square in this case)

I return sends an object back to the caller

I Adding () after the functions name calls the function

(Learning Python, chapter 12)
Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Intersection function

def intersect(seq1, seq2):
res = []
for x in seq1:

if x in seq2:
res.append(x)

return res

I Putting the code in a function means you can run it many
times

I General — callers pass any 2 sequences

I Code is in one place, makes changing it easier (if you have to)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Intersection function

def intersect(seq1, seq2):
res = []
for x in seq1:

if x in seq2:
res.append(x)

return res

I Putting the code in a function means you can run it many
times

I General — callers pass any 2 sequences

I Code is in one place, makes changing it easier (if you have to)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Local variables
Variables inside a function are local to that function

>>> def intersect(s1, s2):

... res = []

... for x in s1:

... if x in s2:

... res.append(x)

... return res

...

>>> intersect([1,2,3,4], [1,5,6,4])

[1, 4]

>>> res

Traceback (most recent call last):

File "<stdin>", line 1, in ?

NameError: name ’res’ is not defined

>>> x

Traceback (most recent call last):

File "<stdin>", line 1, in ?

NameError: name ’x’ is not defined
Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Argument passing

Arguments are passed by assigning objects to local names:

>>> def plusone(x):
... x = x+1
... return x
...
>>> plusone(3)
4
>>> x=6
>>> plusone(x)
7
>>> x
6

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Passing mutable arguments

Recall that numbers, strings, tuples are immutable, and that lists
and dictionaries are mutable:

>>> def appendone(s):
... s.append(’one’)
... return s
...
>>> appendone([’a’, ’b’])
[’a’, ’b’, ’one’]
>>> l = [’a’, ’b’]
>>> appendone(l)
[’a’, ’b’, ’one’]
>>> l
[’a’, ’b’, ’one’]

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

But variable names are still local

>>> def doesnothing(l):
... l = [’1’, ’2’]
...
>>> l = [’a’, ’b’]
>>> doesnothing(l)
>>> l
[’a’, ’b’]

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Importing functions

Put the definition of intersect in a module (call the file foo.py),
then you can import it:

from foo import intersect
... define lst1 and lst2
l3 = intersect(lst1, lst2)

or

import foo
... define lst1 and lst2
l3 = foo.intersect(lst1, lst2)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Importing functions

Put the definition of intersect in a module (call the file foo.py),
then you can import it:

from foo import intersect
... define lst1 and lst2
l3 = intersect(lst1, lst2)

or

import foo
... define lst1 and lst2
l3 = foo.intersect(lst1, lst2)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Importing functions

Put the definition of intersect in a module (call the file foo.py),
then you can import it:

from foo import intersect
... define lst1 and lst2
l3 = intersect(lst1, lst2)

or

import foo
... define lst1 and lst2
l3 = foo.intersect(lst1, lst2)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

map

>>> counters = range(1, 6)
>>> updated = []
>>> for x in counters:
... updated.append(x+3)
...
>>> updated
[4, 5, 6, 7, 8]

>>> def addthree(x):
... return x+3
...
map applies its first argument (a function)
to each element of its second (a list)
>>> map(addthree, counters)
[4, 5, 6, 7, 8]

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

map

>>> counters = range(1, 6)
>>> updated = []
>>> for x in counters:
... updated.append(x+3)
...
>>> updated
[4, 5, 6, 7, 8]

>>> def addthree(x):
... return x+3
...
map applies its first argument (a function)
to each element of its second (a list)
>>> map(addthree, counters)
[4, 5, 6, 7, 8]

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Anonymous functions and list comprehensions

lambda is a way of defining a function with no name
>>> map((lambda x: x+3), counters)
[4, 5, 6, 7, 8]

you can even have a list comprehension...
>>> res = [addthree(x) for x in counters]
>>> res
[4, 5, 6, 7, 8]

Also check out apply, filter and reduce

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Anonymous functions and list comprehensions

lambda is a way of defining a function with no name
>>> map((lambda x: x+3), counters)
[4, 5, 6, 7, 8]

you can even have a list comprehension...
>>> res = [addthree(x) for x in counters]
>>> res
[4, 5, 6, 7, 8]

Also check out apply, filter and reduce

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Anonymous functions and list comprehensions

lambda is a way of defining a function with no name
>>> map((lambda x: x+3), counters)
[4, 5, 6, 7, 8]

you can even have a list comprehension...
>>> res = [addthree(x) for x in counters]
>>> res
[4, 5, 6, 7, 8]

Also check out apply, filter and reduce

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Function design

I Use arguments for the inputs, and return for outputs: try to
make a function independent of things outside it

I Avoid global variables when possible

I Don’t change mutable arguments if possible

I Functions should do one thing well (not do many things)

I Functions should be relatively small

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

Outline
Control Flow

Functions
Summary

Summary

I Loops: for and while

I Functions in Python: built-in, supplied in modules,
user-defined

I Defining functions with def

I Function arguments and return values

I Variables defined in functions are local to the function

I Mutable objects can be changed in functions

I Fancier stuff: mapping functions onto sequences

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)

	Outline
	Dictionaries

	Control Flow
	Conditionals
	Loops

	Functions
	Function basics
	Variables and functions
	Importing functions
	Functional programming
	Designing functions

	Summary

