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Dictionaries

Dictionaries are

I Addressed by key, not by offset

I Unordered collections of arbitrary objects

I Variable length, heterogenous (can contain any type of
object), nestable

I Mutable (can change the elements, unlike strings)

I Think of dictionaries as a set of key:value pairs

I Use a key to access its value

(Learning Python, chapter 7)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)



Outline
Control Flow

Functions
Summary

Dictionaries

Dictionaries

Dictionaries are

I Addressed by key, not by offset

I Unordered collections of arbitrary objects

I Variable length, heterogenous (can contain any type of
object), nestable

I Mutable (can change the elements, unlike strings)

I Think of dictionaries as a set of key:value pairs

I Use a key to access its value

(Learning Python, chapter 7)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)



Outline
Control Flow

Functions
Summary

Dictionaries

Dictionary example

level = {’icl’ : 9, ’pmr’ : 11, ’inf2b’ : 8}

x = level[’pmr’] # 11

n = len(level) # 3

flag = level.has key(’inf2b’) # True

l = level.keys() # [’inf2b’, ’pmr’, ’icl’]

level[’dil’] = 11 # {’dil’: 11, ’inf2b’: 8, ’pmr’: 11, ’icl’: 9}

level[’icl’] = 10 # {’dil’: 11, ’inf2b’: 8, ’pmr’: 11, ’icl’: 10}

l = level.items() # [(’dil’, 11), (’inf2b’, 8), (’pmr’, 11), (’icl’,

10)]

l = level.values() # [11, 11, 8, 10]
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Notes on dictionaries

I Sequence operations don’t work: dictionaries are mappings,
not sequences

I Dictionaries have a set of keys: only one value per key

I Assigning to a new key adds an entry

I Keys can be any immutable object, not just strings

I Dictionaries can be used as “records”

I Dictionaries can be used for sparse matrices
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Tuples and files
Tuples: like lists, but immutable (cannot be changed)

emptyT = ()
T1 = (1, 2, 3)
x = T1[1]
n = len(T1)

Files: objects with methods for reading and writing to files

fil = open(’myfile’, ’w’)
fil.write(’hello file\n’)
fil.close()

f2 = open(’myfile’, ’r’)
s = f2.readline() # ’hello file\n’
t = f2.readline() # ’’

(Learning Python, chapter 7)
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if tests

course = ’icl’
if course == ’icl’:

print ’Miles / Steve’
print ’Semester 1’

elif course == ’dil’:
print ’Phillip’
print ’Semester 2’

else:
print ’Someone else’
print ’Some semester’

I Indentation determines the block structure
I Indentation enforces readability
I Tests after if and elif can be anything that returns

True/False

(Learning Python, chapter 9)
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while loops

A while loop keeps iterating while the test at the top remains True.

a = 0
b = 10
while a < b:

print a
a = a + 1

s = ’icl’
while len(s) > 0:

print s
s = s[1:]

(Learning Python, chapter 10)
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for loops
for is used to step through any sequence object

l = [’a’, ’b’, ’c’]
for i in l:

print i

sum = 0
for x in [1, 2, 3, 4, 5, 6]:

sum = sum + x
print sum

range() is a useful function:

range(5) = [0, 1, 2, 3, 4]
range(2, 5) = [2, 3, 4]
range(0, 6, 2) = [0, 2, 4]
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for loops with style
Do something to each item in a list (eg print its square)

l = [1, 2, 3, 4, 5, 6, 7, 8] # or l = range(1,9)

# one way to print the square
for x in l:

print x*x

# another way to do it
n = len(l)
for i in range(l):

print l[i]*l[i]

Which is better?
The top one... Iterate directly over the sequence, try to avoid
using counter-based loops...
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Example: intersecting sequences
The intersection of
[’a’, ’d’, ’f’, ’g’] and [’a’, ’b’, ’c’, ’d’]
is [’a’, ’d’]

l1 = [’a’, ’d’, ’f’, ’g’]
l2 = [’a’, ’b’, ’c’, ’d’]
res = []
for x in l1:

for y in l2:
if x == y:

res.append(x)

res = []
for x in l1:

if x in l2:
res.append(x)

# res = [’a’, ’d’]
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Built-in, imported and user-defined functions
I Some functions are built-in, eg:

l = len([’a’, ’b’, ’c’])

I Some functions may be imported, eg:

import math
from os import getcwd
print getcwd() # which directory am I in?
x = math.sqrt(9) # 3

I Some functions are user-defined, eg:

def multiply(a, b):
return a * b

print multiply(4, 5)
print multiply(’-’, 5)
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Functions in Python

I Functions are a way to group a set of statements that can be
run more than once in a program.

I They can take parameters as inputs, and can return a value as
output

I Example

def square(x): # create and assign function
return x*x

y = square(5) # y gets assigned the value 25

I def creates a function object, and assigns it to a name
(square in this case)

I return sends an object back to the caller

I Adding () after the functions name calls the function

(Learning Python, chapter 12)
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Intersection function

def intersect(seq1, seq2):
res = []
for x in seq1:

if x in seq2:
res.append(x)

return res

I Putting the code in a function means you can run it many
times

I General — callers pass any 2 sequences

I Code is in one place, makes changing it easier (if you have to)
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Local variables
Variables inside a function are local to that function

>>> def intersect(s1, s2):

... res = []

... for x in s1:

... if x in s2:

... res.append(x)

... return res

...

>>> intersect([1,2,3,4], [1,5,6,4])

[1, 4]

>>> res

Traceback (most recent call last):

File "<stdin>", line 1, in ?

NameError: name ’res’ is not defined

>>> x

Traceback (most recent call last):

File "<stdin>", line 1, in ?

NameError: name ’x’ is not defined
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Argument passing

Arguments are passed by assigning objects to local names:

>>> def plusone(x):
... x = x+1
... return x
...
>>> plusone(3)
4
>>> x=6
>>> plusone(x)
7
>>> x
6
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Passing mutable arguments

Recall that numbers, strings, tuples are immutable, and that lists
and dictionaries are mutable:

>>> def appendone(s):
... s.append(’one’)
... return s
...
>>> appendone([’a’, ’b’])
[’a’, ’b’, ’one’]
>>> l = [’a’, ’b’]
>>> appendone(l)
[’a’, ’b’, ’one’]
>>> l
[’a’, ’b’, ’one’]
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But variable names are still local

>>> def doesnothing(l):
... l = [’1’, ’2’]
...
>>> l = [’a’, ’b’]
>>> doesnothing(l)
>>> l
[’a’, ’b’]
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Importing functions

Put the definition of intersect in a module (call the file foo.py),
then you can import it:

from foo import intersect
# ... define lst1 and lst2
l3 = intersect(lst1, lst2)

or

import foo
# ... define lst1 and lst2
l3 = foo.intersect(lst1, lst2)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)



Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Importing functions

Put the definition of intersect in a module (call the file foo.py),
then you can import it:

from foo import intersect
# ... define lst1 and lst2
l3 = intersect(lst1, lst2)

or

import foo
# ... define lst1 and lst2
l3 = foo.intersect(lst1, lst2)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)



Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

Importing functions

Put the definition of intersect in a module (call the file foo.py),
then you can import it:

from foo import intersect
# ... define lst1 and lst2
l3 = intersect(lst1, lst2)

or

import foo
# ... define lst1 and lst2
l3 = foo.intersect(lst1, lst2)

Steve Renals s.renals@ed.ac.uk Introduction to Programming in Python (2)



Outline
Control Flow

Functions
Summary

Function basics
Variables and functions
Importing functions
Functional programming
Designing functions

map

>>> counters = range(1, 6)
>>> updated = []
>>> for x in counters:
... updated.append(x+3)
...
>>> updated
[4, 5, 6, 7, 8]

>>> def addthree(x):
... return x+3
...
# map applies its first argument (a function)
# to each element of its second (a list)
>>> map(addthree, counters)
[4, 5, 6, 7, 8]
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Anonymous functions and list comprehensions

# lambda is a way of defining a function with no name
>>> map((lambda x: x+3), counters)
[4, 5, 6, 7, 8]

# you can even have a list comprehension...
>>> res = [addthree(x) for x in counters]
>>> res
[4, 5, 6, 7, 8]

Also check out apply, filter and reduce
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Function design

I Use arguments for the inputs, and return for outputs: try to
make a function independent of things outside it

I Avoid global variables when possible

I Don’t change mutable arguments if possible

I Functions should do one thing well (not do many things)

I Functions should be relatively small
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Summary

I Loops: for and while

I Functions in Python: built-in, supplied in modules,
user-defined

I Defining functions with def

I Function arguments and return values

I Variables defined in functions are local to the function

I Mutable objects can be changed in functions

I Fancier stuff: mapping functions onto sequences
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