
Introduction
Basic object types

Summary

Introduction to Programming in Python (1)

Steve Renals
s.renals@ed.ac.uk

ICL — 25 September 2006

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Introduction
Overview
Running programs
Modules

Basic object types
Numbers and variables
Strings
Lists
Dictionaries

Summary

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Python books

I Mark Lutz and David Ascher (2004). Learning Python, 2nd
Edition, O’Reilly.

I Allen Downey, Jeff Elkner and Chris Meyers (2001), How to
Think Like a Computer Scientist: Learning with Python,
Green Tea Press.
http://www.greenteapress.com/thinkpython/

I David Beazley (2006), Python Essential Reference, 3rd
edition, Developer’s Library, Sams Publishing.

I Mark Lutz (2002). Python Pocket Reference, 2nd Edition,
O’Reilly.

I Mark Lutz (2006). Programming Python, 3rd Edition,
O’Reilly.

I Alex Martelli (2006). Python in a Nutshell

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

http://www.greenteapress.com/thinkpython/

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Python features

I Free, portable, powerful

I Easy to mix in components from other languages

I Object-oriented (including operator overloading,
polymorphism, multiple inheritance)

I Easy to use, easy to learn, easy to understand

I NLTK-Lite (Natural Language ToolKit) is a Python package
that we will use in ICL

(Learning Python, chapter 1)

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Python features

I Free, portable, powerful

I Easy to mix in components from other languages

I Object-oriented (including operator overloading,
polymorphism, multiple inheritance)

I Easy to use, easy to learn, easy to understand

I NLTK-Lite (Natural Language ToolKit) is a Python package
that we will use in ICL

(Learning Python, chapter 1)

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Python features

I Free, portable, powerful

I Easy to mix in components from other languages

I Object-oriented (including operator overloading,
polymorphism, multiple inheritance)

I Easy to use, easy to learn, easy to understand

I NLTK-Lite (Natural Language ToolKit) is a Python package
that we will use in ICL

(Learning Python, chapter 1)

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Python features

I Free, portable, powerful

I Easy to mix in components from other languages

I Object-oriented (including operator overloading,
polymorphism, multiple inheritance)

I Easy to use, easy to learn, easy to understand

I NLTK-Lite (Natural Language ToolKit) is a Python package
that we will use in ICL

(Learning Python, chapter 1)

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Python features

I Free, portable, powerful

I Easy to mix in components from other languages

I Object-oriented (including operator overloading,
polymorphism, multiple inheritance)

I Easy to use, easy to learn, easy to understand

I NLTK-Lite (Natural Language ToolKit) is a Python package
that we will use in ICL

(Learning Python, chapter 1)

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Using Python interactively

The easiest way to use Python initially is interactively:

% python
>>> print ’ICL’
ICL
>>> print 3*4
12
>>> print 2**16
65536
>>> myname = ’Steve’
>>> myname
’Steve’

(Learning Python, chapter 3)

Can also use the IDLE environment: idle
May editors/IDEs support python: (X)Emacs, Textmate, Komodo,
...

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Using Python interactively

The easiest way to use Python initially is interactively:

% python
>>> print ’ICL’
ICL
>>> print 3*4
12
>>> print 2**16
65536
>>> myname = ’Steve’
>>> myname
’Steve’

(Learning Python, chapter 3)
Can also use the IDLE environment: idle
May editors/IDEs support python: (X)Emacs, Textmate, Komodo,
...

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Modules

I To save code you need to write it in files

I Module: a text file containing Python code

Example: write the following to file foo.py:

print 25*3 # multiply by 3
print ’ICL ’ + ’lecture 2’ # concatenate strings using +
myname = ’Steve’

(No leading spaces!) Then run it as follows:

% python foo.py
75
ICL lecture 2
%

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Modules

I To save code you need to write it in files

I Module: a text file containing Python code

Example: write the following to file foo.py:

print 25*3 # multiply by 3
print ’ICL ’ + ’lecture 2’ # concatenate strings using +
myname = ’Steve’

(No leading spaces!)

Then run it as follows:

% python foo.py
75
ICL lecture 2
%

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Modules

I To save code you need to write it in files

I Module: a text file containing Python code

Example: write the following to file foo.py:

print 25*3 # multiply by 3
print ’ICL ’ + ’lecture 2’ # concatenate strings using +
myname = ’Steve’

(No leading spaces!) Then run it as follows:

% python foo.py
75
ICL lecture 2
%

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Importing modules

Every file ending in .py is a Python module.

Modules can contain attributes such as functions,
We can import this module into Python:

% python
>>> import foo
75
ICL lecture 2
>>> foo.myname
’Steve’

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Importing modules

Every file ending in .py is a Python module.
Modules can contain attributes such as functions,

We can import this module into Python:

% python
>>> import foo
75
ICL lecture 2
>>> foo.myname
’Steve’

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Importing modules

Every file ending in .py is a Python module.
Modules can contain attributes such as functions,
We can import this module into Python:

% python
>>> import foo
75
ICL lecture 2
>>> foo.myname
’Steve’

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Executable scripts

On unix/linux can make normal Python text files executable:

I The first line is special beginning with #!

I File has executable privileges (chmod +x file.py)

Example: write the following to file foo.py:

#!/usr/bin/python
print 25*3 # multiply by 3
print ’ICL ’ + ’lecture 2’ # concatenate strings using +
myname = ’Steve’

% chmod +x foo.py
% foo.py
75
ICLlecture 2
%

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Executable scripts

On unix/linux can make normal Python text files executable:

I The first line is special beginning with #!

I File has executable privileges (chmod +x file.py)

Example: write the following to file foo.py:

#!/usr/bin/python
print 25*3 # multiply by 3
print ’ICL ’ + ’lecture 2’ # concatenate strings using +
myname = ’Steve’

% chmod +x foo.py
% foo.py
75
ICLlecture 2
%

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Executable scripts

On unix/linux can make normal Python text files executable:

I The first line is special beginning with #!

I File has executable privileges (chmod +x file.py)

Example: write the following to file foo.py:

#!/usr/bin/python
print 25*3 # multiply by 3
print ’ICL ’ + ’lecture 2’ # concatenate strings using +
myname = ’Steve’

% chmod +x foo.py
% foo.py
75
ICLlecture 2
%

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Module reloads

I Importing is expensive—after the first import of a module,
repeated imports of a module have no effect (even if you have
edited it)

I Use reload for force Python to rerun the file again:

>>> import foo
75
ICL lecture 2

Re-edit foo.py to print 25*4 and reload

>>> reload(foo)
100
ICL lecture 2
<module ’foo’ from ’foo.py’>

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Module reloads

I Importing is expensive—after the first import of a module,
repeated imports of a module have no effect (even if you have
edited it)

I Use reload for force Python to rerun the file again:

>>> import foo
75
ICL lecture 2

Re-edit foo.py to print 25*4 and reload

>>> reload(foo)
100
ICL lecture 2
<module ’foo’ from ’foo.py’>

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Module reloads

I Importing is expensive—after the first import of a module,
repeated imports of a module have no effect (even if you have
edited it)

I Use reload for force Python to rerun the file again:

>>> import foo
75
ICL lecture 2

Re-edit foo.py to print 25*4 and reload

>>> reload(foo)
100
ICL lecture 2
<module ’foo’ from ’foo.py’>

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Module attributes
Let bar.py contain the following:

university = ‘Edinburgh‘
school = ‘Informatics‘

>>> import bar
>>> print bar.school
Informatics

>>> from bar import school
>>> print school
Informatics

>>> from bar import *
>>> print university
Edinburgh

from copies named attributes from a module, so they are variables
in the recipient.

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Module attributes
Let bar.py contain the following:

university = ‘Edinburgh‘
school = ‘Informatics‘

>>> import bar
>>> print bar.school
Informatics

>>> from bar import school
>>> print school
Informatics

>>> from bar import *
>>> print university
Edinburgh

from copies named attributes from a module, so they are variables
in the recipient.

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Module attributes
Let bar.py contain the following:

university = ‘Edinburgh‘
school = ‘Informatics‘

>>> import bar
>>> print bar.school
Informatics

>>> from bar import school
>>> print school
Informatics

>>> from bar import *
>>> print university
Edinburgh

from copies named attributes from a module, so they are variables
in the recipient.

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Module attributes
Let bar.py contain the following:

university = ‘Edinburgh‘
school = ‘Informatics‘

>>> import bar
>>> print bar.school
Informatics

>>> from bar import school
>>> print school
Informatics

>>> from bar import *
>>> print university
Edinburgh

from copies named attributes from a module, so they are variables
in the recipient.

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Module attributes
Let bar.py contain the following:

university = ‘Edinburgh‘
school = ‘Informatics‘

>>> import bar
>>> print bar.school
Informatics

>>> from bar import school
>>> print school
Informatics

>>> from bar import *
>>> print university
Edinburgh

from copies named attributes from a module, so they are variables
in the recipient.

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Python program structure

I Programs are composed of modules

I Modules contain statements

I Statements contain expressions

I Expressions create and process objects

(Statements include: variable assignment, function calls, control
flow, module access, building functions, building objects, print)
(Learning Python, chapter 4)

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Python program structure

I Programs are composed of modules

I Modules contain statements

I Statements contain expressions

I Expressions create and process objects

(Statements include: variable assignment, function calls, control
flow, module access, building functions, building objects, print)
(Learning Python, chapter 4)

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Python program structure

I Programs are composed of modules

I Modules contain statements

I Statements contain expressions

I Expressions create and process objects

(Statements include: variable assignment, function calls, control
flow, module access, building functions, building objects, print)
(Learning Python, chapter 4)

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Python program structure

I Programs are composed of modules

I Modules contain statements

I Statements contain expressions

I Expressions create and process objects

(Statements include: variable assignment, function calls, control
flow, module access, building functions, building objects, print)
(Learning Python, chapter 4)

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Overview
Running programs
Modules

Python program structure

I Programs are composed of modules

I Modules contain statements

I Statements contain expressions

I Expressions create and process objects

(Statements include: variable assignment, function calls, control
flow, module access, building functions, building objects, print)
(Learning Python, chapter 4)

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Python’s built-in objects

1. Numbers: integer, floating point, complex

2. Strings

3. Lists

4. Dictionaries

5. Tuples

6. Files

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Numbers (and variables)

I Usual number operators, eg: +, *, /, **, and, &

I Usual operator precedence:
A * B + C * D = (A * B) + (C * D)
(use parens for clarity and to reduce bugs)

I Useful packages: math, random

I Serious users: numeric, numarray
I Variables

I created when first assigned a value
I replaced with their values when used in expressions
I must be assigned before use
I no need to declare ahead of time

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Numbers (and variables)

I Usual number operators, eg: +, *, /, **, and, &

I Usual operator precedence:
A * B + C * D = (A * B) + (C * D)
(use parens for clarity and to reduce bugs)

I Useful packages: math, random

I Serious users: numeric, numarray

I Variables
I created when first assigned a value
I replaced with their values when used in expressions
I must be assigned before use
I no need to declare ahead of time

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Numbers (and variables)

I Usual number operators, eg: +, *, /, **, and, &

I Usual operator precedence:
A * B + C * D = (A * B) + (C * D)
(use parens for clarity and to reduce bugs)

I Useful packages: math, random

I Serious users: numeric, numarray
I Variables

I created when first assigned a value
I replaced with their values when used in expressions
I must be assigned before use
I no need to declare ahead of time

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Strings

I String handling in Python is easy and powerful (unlike C,
C++, Java)

I Strings may be written using single quotes:
’This is a Python string’

I or double quotes
"and so is this"

I They are the same, it just makes it easy to include single
(double) quotes:
’He said "what?"’, "He’s here"

(Learning Python, chapter 5)

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Strings

I String handling in Python is easy and powerful (unlike C,
C++, Java)

I Strings may be written using single quotes:
’This is a Python string’

I or double quotes
"and so is this"

I They are the same, it just makes it easy to include single
(double) quotes:
’He said "what?"’, "He’s here"

(Learning Python, chapter 5)

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Strings

I String handling in Python is easy and powerful (unlike C,
C++, Java)

I Strings may be written using single quotes:
’This is a Python string’

I or double quotes
"and so is this"

I They are the same, it just makes it easy to include single
(double) quotes:
’He said "what?"’, "He’s here"

(Learning Python, chapter 5)

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Backslash in strings

I Backslash \ can be used to escape (protect) certain
non-printing or special characters

I \n is newline, \t is tab

>>> s = ’Name\tAge\nJohn\t21\nBob\t44’
>>> print s
Name Age
John 21
Bob 44
>>> t = ’"Mary\’s"’
>>> print t
"Mary’s"

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Backslash in strings

I Backslash \ can be used to escape (protect) certain
non-printing or special characters

I \n is newline, \t is tab

>>> s = ’Name\tAge\nJohn\t21\nBob\t44’
>>> print s
Name Age
John 21
Bob 44
>>> t = ’"Mary\’s"’
>>> print t
"Mary’s"

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Triple quote

Use a triple quote (""" or ’’’) for a string over several lines:

>>> s = """this is
... a string
... over 3 lines"""
>>> t = ’’’so
... is
... this’’’
>>> print s
this is
a string
over 3 lines
>>> print t
so
is
this

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

String operations

I Concatenation (+)

I Length (len)

I Repetition (*)

I Indexing and slicing ([])

s = ’computational’
t = ’linguistics’
cl = s + ’ ’ + t # ’computational linguistics’
l = len(cl) # 25
u = ’-’ * 6 # ’------’
c = s[3] # p
x = cl[11:16] # ’al li’
y = cl[20:] # ’stics’
z = cl[:-1] # ’computational linguistic’

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

String operations

I Concatenation (+)

I Length (len)

I Repetition (*)

I Indexing and slicing ([])

s = ’computational’
t = ’linguistics’
cl = s + ’ ’ + t # ’computational linguistics’
l = len(cl) # 25
u = ’-’ * 6 # ’------’
c = s[3] # p
x = cl[11:16] # ’al li’
y = cl[20:] # ’stics’
z = cl[:-1] # ’computational linguistic’

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

String methods

I Methods are functions applied associated with objects

I String methods allow strings to be processed in a more
sophisticated way

s = ’example’
s = s.capitalize() # ’Example’
t = s.lower() # ’example’
flag = s.isalpha() # True
s = s.replace(’amp’, ’M’) # ’exMle’
i = t.find(’xa’) # 1
n = t.count(’e’) # 2

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

String methods

I Methods are functions applied associated with objects

I String methods allow strings to be processed in a more
sophisticated way

s = ’example’
s = s.capitalize() # ’Example’
t = s.lower() # ’example’
flag = s.isalpha() # True
s = s.replace(’amp’, ’M’) # ’exMle’
i = t.find(’xa’) # 1
n = t.count(’e’) # 2

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Lists in Python

I Ordered collections of arbitrary objects
I Accessed by indexing based on offset
I Variable length, heterogenous (can contain any type of

object), nestable
I Mutable (can change the elements, unlike strings)

>>> s = [’a’, ’b’, ’c’]
>>> t = [1, 2, 3]
>>> u = s + t # [’a’, ’b’, ’c’, 1, 2, 3]
>>> n = len(u) # 6
>>> for x in s:
... print x
...
a
b
c

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Lists in Python

I Ordered collections of arbitrary objects
I Accessed by indexing based on offset
I Variable length, heterogenous (can contain any type of

object), nestable
I Mutable (can change the elements, unlike strings)

>>> s = [’a’, ’b’, ’c’]
>>> t = [1, 2, 3]
>>> u = s + t # [’a’, ’b’, ’c’, 1, 2, 3]
>>> n = len(u) # 6
>>> for x in s:
... print x
...
a
b
c

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Indexing and slicing lists

I Indexing and slicing work like strings

I Indexing returns the object element

I Slicing returns a list

I Can use indexing and slicing to change contents

l = [’a’, ’b’, ’c’, ’d’]
x = l[2] # ’c’
m = l[1:] # [’b’, ’c’, ’d’]
l[2] = ’z’ # [’a’, ’b’, ’z’, ’d’]
l[0:2] = [’x’, ’y’] # [’x’, ’y’, ’z’, ’d’]

(Learning Python, chapter 6)

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Indexing and slicing lists

I Indexing and slicing work like strings

I Indexing returns the object element

I Slicing returns a list

I Can use indexing and slicing to change contents

l = [’a’, ’b’, ’c’, ’d’]
x = l[2] # ’c’
m = l[1:] # [’b’, ’c’, ’d’]
l[2] = ’z’ # [’a’, ’b’, ’z’, ’d’]
l[0:2] = [’x’, ’y’] # [’x’, ’y’, ’z’, ’d’]

(Learning Python, chapter 6)

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

List methods

I Lists also have some useful methods

I append adds an item to the list

I extend adds multiple items

I sort orders a list in place

l = [’x’, ’y’, ’z’, ’d’]

l.sort() # [’d’, ’x’, ’y’, ’z’]

l.append(’q’) # [’d’, ’x’, ’y’, ’z’, ’q’]

l.extend([’r’, ’s’]) # [’d’, ’x’, ’y’, ’z’, ’q’, ’r’, ’s’]

l.append([’v’, ’w’]) # [’d’, ’x’, ’y’, ’z’, ’q’, ’r’, ’s’, [’v’, ’w’]]

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

List methods

I Lists also have some useful methods

I append adds an item to the list

I extend adds multiple items

I sort orders a list in place

l = [’x’, ’y’, ’z’, ’d’]

l.sort() # [’d’, ’x’, ’y’, ’z’]

l.append(’q’) # [’d’, ’x’, ’y’, ’z’, ’q’]

l.extend([’r’, ’s’]) # [’d’, ’x’, ’y’, ’z’, ’q’, ’r’, ’s’]

l.append([’v’, ’w’]) # [’d’, ’x’, ’y’, ’z’, ’q’, ’r’, ’s’, [’v’, ’w’]]

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Dictionaries

Dictionaries are

I Addressed by key, not by offset

I Unordered collections of arbitrary objects

I Variable length, heterogenous (can contain any type of
object), nestable

I Mutable (can change the elements, unlike strings)

I Think of dictionaries as a set of key:value pairs

I Use a key to access its value

(Learning Python, chapter 7)

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Dictionaries

Dictionaries are

I Addressed by key, not by offset

I Unordered collections of arbitrary objects

I Variable length, heterogenous (can contain any type of
object), nestable

I Mutable (can change the elements, unlike strings)

I Think of dictionaries as a set of key:value pairs

I Use a key to access its value

(Learning Python, chapter 7)

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Dictionary example

level = {’icl’ : 9, ’nlssd’ : 11, ’inf2b’ : 8}

x = level[’nlssd’] # 11

n = len(level) # 3

flag = level.has key(’inf2b’) # True

l = level.keys() # [’nlssd’, ’inf2b’, ’icl’]

level[’dil’] = 11 # {’dil’: 11, ’nlssd’: 11, ’inf2b’: 8, ’icl’: 9}

level[’icl’] = 10 # {’dil’: 11, ’nlssd’: 11, ’inf2b’: 8, ’icl’: 10}

l = level.items() # [(’dil’, 11), (’nlssd’, 11), (’inf2b’, 8), (’icl’,

10)]

l = level.values() # [11, 11, 8, 10]

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Notes on dictionaries

I Sequence operations don’t work: dictionaries are mappings,
not sequences

I Dictionaries have a set of keys: only one value per key

I Assigning to a new key adds an entry

I Keys can be any immutable object, not just strings

I Dictionaries can be used as “records”

I Dictionaries can be used for sparse matrices

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Numbers and variables
Strings
Lists
Dictionaries

Notes on dictionaries

I Sequence operations don’t work: dictionaries are mappings,
not sequences

I Dictionaries have a set of keys: only one value per key

I Assigning to a new key adds an entry

I Keys can be any immutable object, not just strings

I Dictionaries can be used as “records”

I Dictionaries can be used for sparse matrices

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

Introduction
Basic object types

Summary

Summary

I Introduction to Python

I Python programs and modules

I Basic objects: numbers, strings, lists, dictionaries

Steve Renalss.renals@ed.ac.uk Introduction to Programming in Python (1)

	Introduction
	Overview
	Running programs
	Modules

	Basic object types
	Numbers and variables
	Strings
	Lists
	Dictionaries

	Summary

