
1 ICL/PoS Tagging 3/2006–10–26

Contents

1 Outline 1

2 Recall: HMM PoS tagging 1

3 Viterbi decoding 2

4 Trigram PoS tagging 4

5 Summary 5

2 Recall: HMM PoS tagging

Bigram PoS tagger

t̂N1 = arg max
tn
1

P (tN1 |wN
1)

∼
N∏

i=1

P (wi|ti)P (ti|ti−1)

ti−1 ti+1

wi+1wi−1 wi

ti
P(ti|ti−1) P(ti+1|ti)

P(wi|ti)P(wi−1|ti−1) P(wi+1|ti+1)

Hidden Markov models

• Hidden Markov models (HMMs) are appropriate for situations where somethings are observed and
some things are hidden

– Observations: words

– Hidden events: PoS tags

• In an HMM hidden states model the hidden events which are thought of as generating the observed
words

• An HMM is defined by:

– A set of states (ti)

– Transition probabilities between the states

– Observation likelihoods expressing the probability of an observation being generated from a hidden
state

• Decoding: find the most likely state sequence to have generated the observation sequebnce

3 Viterbi decoding

Decoding

• Find the most likely sequence of tags given the observed sequence of words

• Exhaustive search (ie probability evaluation of each possible tag sequence) is very slow (not feasible)

• Use the Markov assumption

• Problem is that of finding the most probable path through a tag-word lattice

• The solution is Viterbi decoding or dynamic programming

• Example: A (very) simplified subset of the POS tagging problem considering just 4 tag classes and 4
words (J&M, 2nd Ed, sec 5.5.3)

Transition and observation probabilities

Transition probabilities: P (ti|ti−1)
VB TO NN PPSS

start 0.019 0.0043 0.041 0.067
VB 0.0038 0.0345 0.047 0.070
TO 0.83 0 0.00047 0
NN 0.0040 0.016 0.087 0.0045
PPSS 0.23 0.00079 0.0012 0.00014

Observation likelihoods: P (wi|ti)
I want to race

VB 0 0.0093 0 0.00012
TO 0 0 0.99 0
NN 0 0.000054 0 0.00057
PPSS 0.37 0 0 0

HMM representation

2

start

VB

NN PPSS

TO

P(w|NN)
I: 0
want:0.000054
to:0
race:0.00057

0.087

0.0045

Decoded HMM representation

VB

I want

start PPSS

Decoding

32 Chapter 5. Word Classes and Part-of-Speech Tagging

single combined automaton for the four words.
The algorithm first createsN + 2 or four state columns. The first column is

an initial pseudo-word, the second corresponds to the observation of the first word
i, the third to the second wordwant, the fourth to the third wordto, and the fifth to
a final pseudo-observation. We begin in the first column by using a simple version
of the π vector in whcih we set the probability of thestart state to 1.0, and the
other probabilities to 0 (left blank for readability); the reader should find this in
Fig. 5.18.

Then we move to the next column; for every state in column 0, wecompute
the probability of moving into each state in column 1. The value viterbi[s, t] is
computed by taking the maximum over the extensions of all thepaths that lead to
the current cell. An extension of a path from a states′ at timet−1 is computed by
multiplying these three factors:

1. theprevious path probability from the previous cellviterbi[s′, t−1],

2. thetransition probability ai j from previous states′ to current states, and

3. theobservation likelihood bs(ot) that current states matches observation
symbolot .

Figure 5.18 The entries in the individual state columns for the Viterbi algorithm.
Each cell keeps the probability of the best path so far and a pointer to the previous
cell along that path. We have only filled out columns 0 and 1 andone cell of column
2; the rest is left as an exercise for the reader. After the cells are filled in, backtracing
from theendstate, we should be able to reconstruct the correct state sequence PPSS
VB TO VB.

In Fig. 5.18, each cell in the column for the wordI is computed by multiply-
ing the previous probability at the start state (1.0), the transition probability from
the start state to the tag for that cell, and the observation likelihood of the wordI

Viterbi decoding algorithm

3

1. Create path probability matrix Viterbi(nstates+2, N+2)

2. Viterbi(0,0) = 1 # start

3. foreach time step t in (1..N):

• foreach state s:
– Viterbi(s,t) = maxs′ Viterbi(s’,t-1)*p(s|s’)*p(w(t)|s)
– BackPointer(s,t) = arg maxs′ Viterbi(s’,t-1)*p(s|s’)

In practice use log probabilities (and * becomes +): Local score (t) = log(p(w(t)|s)) Global score (0) =
1 Global score (t) = Global score (t-1) + log p(s(t)|s(t-1)) + local score(t)

4 Trigram PoS tagging

TnT — A trigram POS tagger

• TnT — trigram-based tagger by Thorsten Brants (installed on DICE) (http://www.coli.uni-sb.de/ thorsten/tnt/)

• Based on the n-gram/HMM model described above, except that the tag sequence is modelled by
trigrams

• n-grams are smoothed by interpolation

• Unknown words handled by an n-gram model over letters

• Also models capitalization and has an efficient decoding algorithm (beam-search pruned Viterbi)

• Fast and accurate tagger — 96-97% accuracy on newspaper text (English or German)

The trigram model

P (WN
1 |TN

1)P (TN
1) ∼

N+1∏
i=1

P (wi|ti)P (ti|ti−2, ti−1)

• The most likely tag sequence t1, . . . , tN is chosen to maximise the above expression

• t0, t−1 and tn+1 are beginning- and end-of-sequence markers

• Probabilities estimated from relative frequency counts (maximum likelihood), eg:

P̂ (t3|t1, t2) =
c(t1, t2, t3)
c(t1, t2)

• No discounting in TnT!

Smoothing

• Maximum likelihood estimation for trigrams results in many zero probabilities

• Interpolation-based smoothing:

P (t3|t1, t2) = λ3P̂ (t3|t1, t2) + λ2P̂ (t3|t2) + λ1P̂ (t3)

λ3 + λ2 + λ1 = 1

• The λ coefficients are also estimated from the training data (deleted interpolation)

4

http://www.coli.uni-sb.de/~thorsten/tnt/

Dealing with new words

• Unknown words are calculated using a letter-based n-gram, using the last m letters li of an L-letter
word: P (t|lL−m+1, . . . , lL).

• Basic idea: suffixes of unknown words give a good clue to the POS of the word

• How big is m? - no bigger than 10, but it is based on the longest suffix found in the training set

• These probabilities also smoothed by interpolation

5 Summary

• Reading:

– Jurafsky and Martin, 2nd ed, sec 5.5

– Manning and Schütze, chapter 10;

– T. Brants (2000). ”TnT – a statistical part-of-speech tagger”. In Proceedings of the 6th Applied
NLP Conference, ANLP-2000. http://uk.arxiv.org/abs/cs.CL/0003055

• Viterbi decoding

• TnT — an accurate trigram-based tagger

5

http://uk.arxiv.org/abs/cs.CL/0003055

	Outline
	Recall: HMM PoS tagging
	Viterbi decoding
	Trigram PoS tagging
	Summary

