Part-of-speech tagging (3)

Steve Renals s.renals@ed.ac.uk

ICL — 26 October 2006

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Outline

Recall: HMM PoS tagging Viterbi decoding Trigram PoS tagging Summary

Recall: HMM PoS tagging

Viterbi decoding

Trigram PoS tagging

Summary

A ►

A B + A B +

Bigram PoS tagger

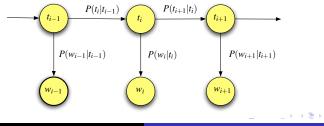
$$\hat{t}_1^N = rg\max_{t_1^n} P(t_1^N|w_1^N) \ \sim \prod_{i=1}^N P(w_i|t_i)P(t_i|t_{i-1})$$

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Bigram PoS tagger

$$egin{aligned} \hat{t}_1^N &= rg\max_{t_1^n} P(t_1^N | w_1^N) \ &\sim \prod_{i=1}^N P(w_i | t_i) P(t_i | t_{i-1}) \end{aligned}$$



æ

Steve Renals s.renals@ed.ac.uk Part-of-speech tagging (3)

- Hidden Markov models (HMMs) are appropriate for situations where somethings are observed and some things are hidden
 - Observations: words
 - Hidden events: PoS tags

- Hidden Markov models (HMMs) are appropriate for situations where somethings are observed and some things are hidden
 - Observations: words
 - Hidden events: PoS tags
- In an HMM hidden states model the hidden events which are thought of as generating the observed words

- Hidden Markov models (HMMs) are appropriate for situations where somethings are observed and some things are hidden
 - Observations: words
 - Hidden events: PoS tags
- In an HMM hidden states model the hidden events which are thought of as generating the observed words
- An HMM is defined by:
 - ▶ A set of states (*t_i*)
 - Transition probabilities between the states
 - Observation likelihoods expressing the probability of an observation being generated from a hidden state

- Hidden Markov models (HMMs) are appropriate for situations where somethings are observed and some things are hidden
 - Observations: words
 - Hidden events: PoS tags
- In an HMM hidden states model the hidden events which are thought of as generating the observed words
- An HMM is defined by:
 - ► A set of states (*t_i*)
 - Transition probabilities between the states
 - Observation likelihoods expressing the probability of an observation being generated from a hidden state
- Decoding: find the most likely state sequence to have generated the observation sequebnce

Decoding

- Find the most likely sequence of tags given the observed sequence of words
- Exhaustive search (ie probability evaluation of each possible tag sequence) is very slow (not feasible)

Decoding

- Find the most likely sequence of tags given the observed sequence of words
- Exhaustive search (ie probability evaluation of each possible tag sequence) is very slow (not feasible)
- Use the Markov assumption
- Problem is that of finding the most probable path through a tag-word lattice

Decoding

- Find the most likely sequence of tags given the observed sequence of words
- Exhaustive search (ie probability evaluation of each possible tag sequence) is very slow (not feasible)
- Use the Markov assumption
- Problem is that of finding the most probable path through a tag-word lattice
- The solution is Viterbi decoding or dynamic programming
- Example: A (very) simplified subset of the POS tagging problem considering just 4 tag classes and 4 words (J&M, 2nd Ed, sec 5.5.3)

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Transition and observation probabilities

Transition probabilities: $P(t_i|t_{i-1})$

VB	то	NN	PPSS
0.019	0.0043	0.041	0.067
0.0038	0.0345	0.047	0.070
0.83	0	0.00047	0
0.0040	0.016	0.087	0.0045
0.23	0.00079	0.0012	0.00014
	0.019 0.0038 0.83 0.0040	0.019 0.0043 0.0038 0.0345 0.83 0 0.0040 0.016	0.019 0.0043 0.041 0.0038 0.0345 0.047 0.83 0 0.00047 0.0040 0.016 0.087

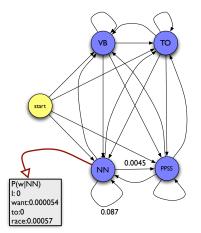
Observation likelihoods: $P(w_i|t_i)$

	I	want	to	race
VB	0	0.0093	0	0.00012
то	0	0	0.99	0
NN	0	0.000054	0	0.00057
PPSS	0.37	0	0	0

Steve Renals s.renals@ed.ac.uk

Part-of-speech tagging (3)

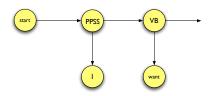
HMM representation



イロン イロン イヨン イヨン

æ

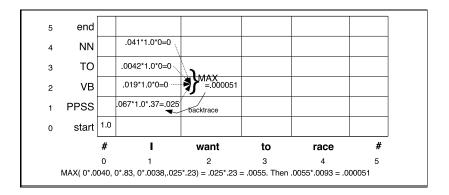
Decoded HMM representation



æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Decoding



・ロト ・同ト ・ヨト ・ヨト

3

Viterbi decoding algorithm

- 1. Create path probability matrix VITERBI(nstates+2, N+2)
- 2. VITERBI(0,0) = 1 # start
- 3. foreach time step t in (1..N):
 - foreach state s:
 - $VITERBI(s,t) = max_{s'} VITERBI(s',t-1)*p(s|s')*p(w(t)|s)$
 - BACKPOINTER(s,t) = $arg max_{s'}$ VITERBI(s',t-1)*p(s|s')

・ 同 ト ・ ヨ ト ・ ヨ ト

In practice use log probabilities (and * becomes +): Local score (t) = log(p(w(t)|s)) Global score (0) = 1 Global score (t) = Global score (t-1) + log p(s(t)|s(t-1)) + local score(t)

TnT — A trigram POS tagger

- TnT trigram-based tagger by Thorsten Brants (installed on DICE) (http://www.coli.uni-sb.de/ thorsten/tnt/)
- Based on the n-gram/HMM model described above, except that the tag sequence is modelled by trigrams

- - E + - E +

TnT — A trigram POS tagger

- TnT trigram-based tagger by Thorsten Brants (installed on DICE) (http://www.coli.uni-sb.de/ thorsten/tnt/)
- Based on the n-gram/HMM model described above, except that the tag sequence is modelled by trigrams
- n-grams are smoothed by interpolation

・ 同 ト ・ ヨ ト ・ ヨ ト

TnT — A trigram POS tagger

- TnT trigram-based tagger by Thorsten Brants (installed on DICE) (http://www.coli.uni-sb.de/ thorsten/tnt/)
- Based on the n-gram/HMM model described above, except that the tag sequence is modelled by trigrams
- n-grams are smoothed by interpolation
- Unknown words handled by an n-gram model over letters

A B > A B >

TnT — A trigram POS tagger

- TnT trigram-based tagger by Thorsten Brants (installed on DICE) (http://www.coli.uni-sb.de/ thorsten/tnt/)
- Based on the n-gram/HMM model described above, except that the tag sequence is modelled by trigrams
- n-grams are smoothed by interpolation
- Unknown words handled by an n-gram model over letters
- Also models capitalization and has an efficient decoding algorithm (beam-search pruned Viterbi)

・ 同 ト ・ ヨ ト ・ ヨ ト

TnT — A trigram POS tagger

- TnT trigram-based tagger by Thorsten Brants (installed on DICE) (http://www.coli.uni-sb.de/ thorsten/tnt/)
- Based on the n-gram/HMM model described above, except that the tag sequence is modelled by trigrams
- n-grams are smoothed by interpolation
- Unknown words handled by an n-gram model over letters
- Also models capitalization and has an efficient decoding algorithm (beam-search pruned Viterbi)
- Fast and accurate tagger 96-97% accuracy on newspaper text (English or German)

(4 同) (4 回) (4 \Pi) (4 \Pi)

The trigram model

$$P(W_1^N|T_1^N)P(T_1^N) \sim \prod_{i=1}^{N+1} P(w_i|t_i)P(t_i|t_{i-2},t_{i-1})$$

- ► The most likely tag sequence t₁,..., t_N is chosen to maximise the above expression
- ▶ t_0 , t_{-1} and t_{n+1} are beginning- and end-of-sequence markers

The trigram model

$$P(W_1^N|T_1^N)P(T_1^N) \sim \prod_{i=1}^{N+1} P(w_i|t_i)P(t_i|t_{i-2},t_{i-1})$$

- ► The most likely tag sequence t₁,..., t_N is chosen to maximise the above expression
- ▶ t_0 , t_{-1} and t_{n+1} are beginning- and end-of-sequence markers
- Probabilities estimated from relative frequency counts (maximum likelihood), eg:

$$\hat{P}(t_3|t_1,t_2) = rac{c(t_1,t_2,t_3)}{c(t_1,t_2)}$$

► No discounting in TnT!

Smoothing

- Maximum likelihood estimation for trigrams results in many zero probabilities
- Interpolation-based smoothing:

$$egin{aligned} & P(t_3|t_1,t_2) = \lambda_3 \hat{P}(t_3|t_1,t_2) + \lambda_2 \hat{P}(t_3|t_2) + \lambda_1 \hat{P}(t_3) \ & \lambda_3 + \lambda_2 + \lambda_1 = 1 \end{aligned}$$

< 同 ▶

* E > * E >

Smoothing

- Maximum likelihood estimation for trigrams results in many zero probabilities
- Interpolation-based smoothing:

► The λ coefficients are also estimated from the training data (deleted interpolation)

Dealing with new words

► Unknown words are calculated using a letter-based n-gram, using the last *m* letters *l_i* of an *L*-letter word: *P*(*t*|*I*_{*L*-*m*+1},...,*I_L*).

A B + A B +

A D

Dealing with new words

- ► Unknown words are calculated using a letter-based n-gram, using the last *m* letters *l_i* of an *L*-letter word: *P*(*t*|*l_{L-m+1},...,<i>l_L*).
- Basic idea: suffixes of unknown words give a good clue to the POS of the word
- How big is m? no bigger than 10, but it is based on the longest suffix found in the training set
- These probabilities also smoothed by interpolation

Reading:

- Jurafsky and Martin, 2nd ed, sec 5.5
- Manning and Schütze, chapter 10;
- T. Brants (2000). "TnT a statistical part-of-speech tagger". In Proceedings of the 6th Applied NLP Conference, ANLP-2000.

★ Ξ →

http://uk.arxiv.org/abs/cs.CL/0003055

- Viterbi decoding
- TnT an accurate trigram-based tagger