
1 ICL/PoS Tagging 2/2006–10–23

Contents

1 Outline 1

2 A pattern recognition approach 1
2.1 Statistical PoS tagging . 1
2.2 Example . 3

3 n-gram tagging in NLTK 4

4 Summary 4

2 A pattern recognition approach

2.1 Statistical PoS tagging

HMM PoS tagging

• Also referred to as n-gram tagging

• Sequence classification task: given a sequence of N words, return a sequence of N tags

• Basic idea: consider all possible sequences of tags and choose the most probable given the sequence of
words.

• Notation: let wN
1 be the sequence of N words, and tN1 the sequence of N tags. Then our best hypothesis

of the correct tag sequence, t̂N1 is:
t̂N1 = arg max

tn
1

P (tN1 |wN
1)

• Problem: how do we compute P (tN1 |wN
1)?

Bayes rule

• Bayes rule is a useful way to manipulate conditional probabilities:

P (a|b) =
P (b|a)P (a)

P (b)

• So we can rewrite the above as

t̂N1 = arg max
tn
1

P (wN
1 |tN1)P (tN1)
P (wN

1)

• To find the most likely tag sequence involves comparing probabilities, given the same word sequence:
hence P (wN

1) does not change and we can write:

t̂N1 = arg max
tn
1

P (wN
1 |tN1)P (tN1)

Prior and likelihood

• P (wN
1 |tN1) is called the likelihood

• P (tN1) is called the prior

• We need some simplifying assumptions to estimate these terms

• (1) Likelihood: assume that the probability of a word depends only on its tag; independent of sur-
rounding words and their tags:

P (wN
1 |tN1) ∼

N∏
i=1

P (wi|ti)

• (2) Prior: use an n-gram assumption (eg bigram):

P (tN1) ∼
N∏

i=1

P (ti|ti−1)

Putting it together

• Bigram part-of-speech tagger computes the following to estimate the most likely tag sequence:

t̂N1 = arg max
tn
1

P (tN1 |wN
1)

∼
N∏

i=1

P (wi|ti)P (ti|ti−1)

• For each word take the product of the word likelihood (given the tag) and the tag transition probability

HMM representation

ti−1 ti+1

wi+1wi−1 wi

ti
P(ti|ti−1) P(ti+1|ti)

P(wi|ti)P(wi−1|ti−1) P(wi+1|ti+1)

Training and decoding

• Problem 1: Estimate the probability tables P (wi|ti) and P (ti|ti−1) (Training)

• Problem 2: Given the probability tables and a sequence of words, what is the most likely sequence of
tags (Decoding)

2

Training: Estimating the probabilities

• Use maximum likelihood to estimate the tag transition and word probabilities by computing a ratio of
counts:

P ′(ti|ti−1) =
c(ti−1, ti)
c(ti−1)

P ′(wi|ti) =
c(ti, wi)

c(ti)

• Example: estimate of P (NN |DT) in the treebank:

P ′(NN |DT) =
c(DT, NN)

c(DT)
=

56 509
116 454

= 0.49

• Example: estimate of P (is|V BZ):

P ′(is|V BZ) =
c(V BZ, is)
c(V BZ)

=
10 073
21 627

= 0.47

2.2 Example

Dealing with ambiguity (example from J&M)
Secretariat/NNP is/VBZ expected/VBZ to/TO race/VB tomorrow/NN

People/NNS continue/VBP to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN

• “race” is a verb in the first, a noun in the second.

• Assume that race is the only untagged word, so we can assume the tags of the others.

• Probabilities of “race” being a verb, or race being a noun in the first example:

P (race is V B) = P (race|V B)P (V B|TO)
P (race is NN) = P (race|NN)P (NN |TO)

HMM representation

NNP VBTOVBN NRVBZ

NNP NNTOVBN NRVBZ

Secretariat is toexpected race tomorrow

Secretariat is expected to race tomorrow

3

Example (continued)

P (NN |TO) = 0.021
P (V B|TO) = 0.34

P (race|NN) = 0.00041
P (race|V B) = 0.00003

P (race is V B) = P (race|V B)P (V B|TO)
= 0.00003× 0.34 = 0.00001

P (race is NN) = P (race|NN)P (NN |TO)
= 0.00041× 0.021 = 0.000007

3 n-gram tagging in NLTK

Simple bigram tagging in NLTK

>>> default_pattern = (r’.*’, ’NN’)

>>> cd_pattern = (r’ ^[0-9]+(.[0-9]+)?$’, ’CD’)

>>> patterns = [cd_pattern, default_pattern]

>>> NN_CD_tagger = tag.Regexp(patterns)

>>> unigram_tagger = tag.Unigram(cutoff=0, backoff=NN_CD_tagger)

>>> unigram_tagger.train(train_sents)

>>> bigram_tagger = tag.Bigram(backoff=unigram_tagger)

>>> bigram_tagger.train(train_sents)

uses print_accuracy function defined in lecture PoS1

>>> print_accuracy(bigram_tagger, train_sents)

95.6%

>>> print_accuracy(bigram_tagger, test_sents)

84.2%

Limitation of NLTK n-gram taggers

• Does not find the most likely sequence of tags, simply works left to right always assigning the most
probable single tag (given the previous tag assignments)

• Does not cope with zero probability problem well (no smoothing or discounting)

• (see module nltk_lite.tag.hmm)

• Next lecture: Viterbi algorithm—efficiently decoding the most likely sequence of tags given the words

4 Summary

• Reading:

– Jurafsky and Martin, chapter 8 (esp. sec 8.5);

4

– Manning and Schütze, chapter 10;

• HMMs and n-grams for statistical tagging

• Operation of a simple bigram tagger

5

	Outline
	A pattern recognition approach
	Statistical PoS tagging
	Example

	n-gram tagging in NLTK
	Summary

