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HMM PoS tagging

I Also referred to as n-gram tagging

I Sequence classification task: given a sequence of N words,
return a sequence of N tags

I Basic idea: consider all possible sequences of tags and choose
the most probable given the sequence of words.

I Notation: let wN
1 be the sequence of N words, and tN

1 the
sequence of N tags. Then our best hypothesis of the correct
tag sequence, t̂N

1 is:

t̂N
1 = arg max

tn
1

P(tN
1 |wN

1 )

I Problem: how do we compute P(tN
1 |wN

1 )?
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Bayes rule

I Bayes rule is a useful way to manipulate conditional
probabilities:

P(a|b) =
P(b|a)P(a)

P(b)

I So we can rewrite the above as

t̂N
1 = arg max

tn
1

P(wN
1 |tN

1 )P(tN
1 )

P(wN
1 )

I To find the most likely tag sequence involves comparing
probabilities, given the same word sequence: hence P(wN

1 )
does not change and we can write:

t̂N
1 = arg max

tn
1

P(wN
1 |tN

1 )P(tN
1 )

Steve Renals s.renals@ed.ac.uk Part-of-speech tagging (2)



Outline
A pattern recognition approach

n-gram tagging in NLTK
Summary

Statistical PoS tagging
Example

Bayes rule

I Bayes rule is a useful way to manipulate conditional
probabilities:

P(a|b) =
P(b|a)P(a)

P(b)

I So we can rewrite the above as

t̂N
1 = arg max

tn
1

P(wN
1 |tN

1 )P(tN
1 )

P(wN
1 )

I To find the most likely tag sequence involves comparing
probabilities, given the same word sequence: hence P(wN

1 )
does not change and we can write:

t̂N
1 = arg max

tn
1

P(wN
1 |tN

1 )P(tN
1 )

Steve Renals s.renals@ed.ac.uk Part-of-speech tagging (2)



Outline
A pattern recognition approach

n-gram tagging in NLTK
Summary

Statistical PoS tagging
Example

Bayes rule

I Bayes rule is a useful way to manipulate conditional
probabilities:

P(a|b) =
P(b|a)P(a)

P(b)

I So we can rewrite the above as

t̂N
1 = arg max

tn
1

P(wN
1 |tN

1 )P(tN
1 )

P(wN
1 )

I To find the most likely tag sequence involves comparing
probabilities, given the same word sequence: hence P(wN

1 )
does not change and we can write:

t̂N
1 = arg max

tn
1

P(wN
1 |tN

1 )P(tN
1 )

Steve Renals s.renals@ed.ac.uk Part-of-speech tagging (2)



Outline
A pattern recognition approach

n-gram tagging in NLTK
Summary

Statistical PoS tagging
Example

Prior and likelihood
I P(wN

1 |tN
1 ) is called the likelihood

I P(tN
1 ) is called the prior

I We need some simplifying assumptions to estimate these
terms

I (1) Likelihood: assume that the probability of a word depends
only on its tag; independent of surrounding words and their
tags:

P(wN
1 |tN

1 ) ∼
N∏

i=1

P(wi |ti )

I (2) Prior: use an n-gram assumption (eg bigram):

P(tN
1 ) ∼

N∏
i=1

P(ti |ti−1)
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Putting it together

I Bigram part-of-speech tagger computes the following to
estimate the most likely tag sequence:

t̂N
1 = arg max

tn
1

P(tN
1 |wN

1 )

∼
N∏

i=1

P(wi |ti )P(ti |ti−1)

I For each word take the product of the word likelihood (given
the tag) and the tag transition probability
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HMM representation

ti−1 ti+1

wi+1wi−1 wi

ti
P(ti|ti−1) P(ti+1|ti)

P(wi|ti)P(wi−1|ti−1) P(wi+1|ti+1)
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Training and decoding

I Problem 1: Estimate the probability tables P(wi |ti ) and
P(ti |ti−1) (Training)

I Problem 2: Given the probability tables and a sequence of
words, what is the most likely sequence of tags (Decoding)
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Training: Estimating the probabilities
I Use maximum likelihood to estimate the tag transition and

word probabilities by computing a ratio of counts:

P ′(ti |ti−1) =
c(ti−1, ti )

c(ti−1)

P ′(wi |ti ) =
c(ti ,wi )

c(ti )

I Example: estimate of P(NN|DT ) in the treebank:

P ′(NN|DT ) =
c(DT ,NN)

c(DT )
=

56 509

116 454
= 0.49

I Example: estimate of P(is|VBZ ):

P ′(is|VBZ ) =
c(VBZ , is)

c(VBZ )
=

10 073

21 627
= 0.47
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Dealing with ambiguity (example from J&M)
Secretariat/NNP is/VBZ expected/VBZ to/TO race/VB tomorrow/NN

People/NNS continue/VBP to/TO inquire/VB the/DT reason/NN

for/IN the/DT race/NN for/IN outer/JJ space/NN

I “race” is a verb in the first, a noun in the second.

I Assume that race is the only untagged word, so we can
assume the tags of the others.

I Probabilities of “race” being a verb, or race being a noun in
the first example:

P(race is VB) = P(race|VB)P(VB|TO)

P(race is NN) = P(race|NN)P(NN|TO)
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HMM representation

NNP VBTOVBN NRVBZ

NNP NNTOVBN NRVBZ

Secretariat is toexpected race tomorrow

Secretariat is expected to race tomorrow
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Example (continued)

P(NN|TO) = 0.021

P(VB|TO) = 0.34

P(race|NN) = 0.00041

P(race|VB) = 0.00003

P(race is VB) = P(race|VB)P(VB|TO)

= 0.00003× 0.34 = 0.00001

P(race is NN) = P(race|NN)P(NN|TO)

= 0.00041× 0.021 = 0.000007
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Simple bigram tagging in NLTK

>>> default_pattern = (r’.*’, ’NN’)
>>> cd_pattern = (r’ ^[0-9]+(.[0-9]+)?$’, ’CD’)
>>> patterns = [cd_pattern, default_pattern]
>>> NN_CD_tagger = tag.Regexp(patterns)
>>> unigram_tagger = tag.Unigram(cutoff=0, backoff=NN_CD_tagger)
>>> unigram_tagger.train(train_sents)
>>> bigram_tagger = tag.Bigram(backoff=unigram_tagger)
>>> bigram_tagger.train(train_sents)

# uses print_accuracy function defined in lecture PoS1
>>> print_accuracy(bigram_tagger, train_sents)
95.6%
>>> print_accuracy(bigram_tagger, test_sents)
84.2%
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Limitation of NLTK n-gram taggers

I Does not find the most likely sequence of tags, simply works
left to right always assigning the most probable single tag
(given the previous tag assignments)

I Does not cope with zero probability problem well (no
smoothing or discounting)

I (see module nltk_lite.tag.hmm)

I Next lecture: Viterbi algorithm—efficiently decoding the most
likely sequence of tags given the words
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Summary

I Reading:
I Jurafsky and Martin, chapter 8 (esp. sec 8.5);
I Manning and Schütze, chapter 10;

I HMMs and n-grams for statistical tagging

I Operation of a simple bigram tagger
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