Outline Parts of Speech PoS Tagging in NLTK Rule-based tagging Evaluating taggers Summary

# Part-of-speech tagging (1)

Steve Renals s.renals@ed.ac.uk

ICL — 19 October 2006



#### Parts of Speech

Introduction Open and closed classes Tagsets

#### PoS Tagging in NLTK

Tagging
Simple taggers
Unigram taggers

Rule-based tagging

#### **Evaluating taggers**

Accuracy and gold standard Error analysis

#### Summary



# Parts of speech

- How can we predict the behaviour of a previously unseen word?
- Words can be divided into classes that behave similarly.
- ► Traditionally eight parts of speech: noun, verb, pronoun, preposition, adverb, conjunction, adjective and article.
- More recently larger sets have been used: eg Penn Treebank (45 tags), Susanne (353 tags).

# Parts of Speech

What use are parts of speech?

They tell us a lot about a word (and the words near it).

# Parts of Speech

#### What use are parts of speech?

They tell us a lot about a word (and the words near it).

- ► Tell us what words are likely to occur in the neighbourhood (eg adjectives often followed by nouns, personal pronouns often followed by verbs, possessive pronouns by nouns)
- Pronunciations can be dependent on part of speech, eg object, content, discount (useful for speech synthesis and speech recognition)
- Can help information retrieval and extraction (stemming, partial parsing)
- Useful component in many NLP systems



# Closed and open classes

- ▶ Parts of speech may be categorised as *open* or *closed* classes
- Closed classes have a fixed membership of words (more or less), eg determiners, pronouns, prepositions
- Closed class words are usually function words frequently occurring, grammatically important, often short (eg of,it,the,in)
- ► The major open classes are *nouns*, *verbs*, *adjectives* and *adverbs*

# Closed classes in English

```
prepositions on, under, over, to, with, by determiners the, a, an, some pronouns she, you, I, who conjunctions and, but, or, as, when, if auxiliary verbs can, may, are particles up, down, at, by numerals one, two, first, second
```

### Open classes

vesterday

# The Penn Treebank tagset (1)

| CC  | Coord Conjuncn    | and,but,or | NN   | Noun, sing. or mass | dog       |
|-----|-------------------|------------|------|---------------------|-----------|
| CD  | Cardinal number   | one,two    | NNS  | Noun, plural        | dogs      |
| DT  | Determiner        | the,some   | NNP  | Proper noun, sing.  | Edinburgh |
| EX  | Existential there | there      | NNPS | Proper noun, plural | Orkneys   |
| FW  | Foreign Word      | mon dieu   | PDT  | Predeterminer       | all, both |
| IN  | Preposition       | of,in,by   | POS  | Possessive ending   | 's        |
| JJ  | Adjective         | big        | PP   | Personal pronoun    | I,you,she |
| JJR | Adj., comparative | bigger     | PP\$ | Possessive pronoun  | my,one's  |
| JJS | Adj., superlative | biggest    | RB   | Adverb              | quickly   |
| LS  | List item marker  | 1,One      | RBR  | Adverb, comparative | faster    |
| MD  | Modal             | can,should | RBS  | Adverb, superlative | fastest   |
|     |                   |            |      |                     |           |

# The Penn Treebank tagset (2)

| RP  | Particle            | up,off     | WP\$ | Possessive-Wh    | whose     |
|-----|---------------------|------------|------|------------------|-----------|
| SYM | Symbol              | +,%,&      | WRB  | Wh-adverb        | how,where |
| TO  | "to"                | to         | \$   | Dollar sign      | \$        |
| UH  | Interjection        | oh, oops   | #    | Pound sign       | #         |
| VB  | verb, base form     | eat        | "    | Left quote       | , ,,      |
| VBD | verb, past tense    | ate        | "    | Right quote      | , ,,      |
| VBG | verb, gerund        | eating     | (    | Left paren       | (         |
| VBN | verb, past part     | eaten      | )    | Right paren      | )         |
| VBP | Verb, non-3sg, pres | eat        | ,    | Comma            | ,         |
| VBZ | Verb, 3sg, pres     | eats       |      | Sent-final punct | .!?       |
| WDT | Wh-determiner       | which,that | :    | Mid-sent punct.  | : ; —     |
| WP  | Wh-pronoun          | what,who   |      |                  |           |

# **Tagging**

- Definition: Tagging is the assignment of a single part-of-speech tag to each word (and punctuation marker) in a corpus. For example:
  - "/" The/DT guys/NNS that/WDT make/VBP traditional/JJ hardware/NN are/VBP really/RB being/VBG obsoleted/VBN by/IN microprocessor-based/JJ machines/NNS ,/, "/" said/VBD Mr./NNP Benton/NNP ./.
- Non-trivial: POS tagging must resolve ambiguities since the same word can have different tags in different contexts
- ▶ In the Brown corpus 11.5% of word types and 40% of word tokens are ambiguous
- ► In many cases one tag is much more likely for a given word than any other
- ► Limited scope: only supplying a tag for each word, no larger structures created (eg prepositional phrase attachment)

## Information sources for tagging

What information can help decide the correct PoS tag for a word?

Other PoS tags Even though the PoS tags of other words may be uncertain too, we can use information that some tag sequences are more likely than others (eg the/AT red/JJ drink/NN vs the/AT red/JJ drink/VBP).

Using only information about the most likely PoS tag sequence does not result in an accurate tagger (about 77% correct)

The word identity Many words can gave multiple possible tags, but some are more likely than others (eg fall/VBP vs fall/NN)

Tagging each word with its most common tag results in a tagger with about 90% accuracy



### Tagging in NLTK

The simplest possible tagger tags everything as a noun:

```
from nltk_lite import tokenize
text = 'There are 11 players in a football team'
text_tokens = list(tokenize.whitespace(text))
# ['There', 'are', '11', 'players', 'in', 'a', 'football', 'team'
```

#### Tagging in NLTK

# . . .

The simplest possible tagger tags everything as a noun:

```
from nltk_lite import tokenize
text = 'There are 11 players in a football team'
text_tokens = list(tokenize.whitespace(text))
# ['There', 'are', '11', 'players', 'in', 'a', 'football', 'team'
from nltk_lite import tag
mytagger = tag.Default('NN')
for t in mytagger.tag(text_tokens):
    print t
# ('There', 'NN')
# ('are', 'NN')
```

### A regular expression tagger

We can use regular expressions to tag tokens based on regularities in the text, eg numerals:

```
default_pattern = (r'.*', 'NN')
cd_pattern = (r' ^[0-9]+(.[0-9]+)?$', 'CD')
patterns = [cd_pattern, default_pattern]
NN_CD_tagger = tag.Regexp(patterns)
re_tagged = list(NN_CD_tagger.tag(text_tokens))
# [('There', 'NN'), ('are', 'NN'), ('11', 'NN'), ('players', 'NN'), ('in', 'NN'), ('a', 'NN'), ('football', 'NN'), ('team', 'NN')]
```

# Unigram tagger trained on Penn Treebank

The NLTK UnigramTagger class implements a tagging algorithm based on a table of unigram probabilities:

$$tag(w) = arg \max_{t_i} P(t_i|w)$$

# Unigram tagger trained on Penn Treebank

The NLTK UnigramTagger class implements a tagging algorithm based on a table of unigram probabilities:

```
tag(w) = \arg \max_{t_i} P(t_i|w)
from nltk_lite import tokenize, tag
from nltk_lite.corpora import treebank
from itertools import islice
# sentences 0-2999
train_sents = list(islice(treebank.tagged(), 3000))
# from sentence 3000 to the end
test_sents = list(islice(treebank.tagged(), 3000, None))
unigram_tagger = tag.Unigram()
unigram_tagger.train(train_sents)
```

### Unigram tagging

```
>>> list(unigram_tagger.tag(tokenize.whitespace("Mr. Jones saw
the book on the shelf")))
[('Mr.', 'NNP'), ('Jones', 'NNP'), ('saw', 'VBD'), ('the', 'DT')
('book', 'NN'), ('on', 'IN'), ('the', 'DT'), ('shelf', None)]
```

The UnigramTagger assigns the default tag None to words that are not in the training data (eg *shelf*)

### Unigram tagging

```
>>> list(unigram_tagger.tag(tokenize.whitespace("Mr. Jones saw
the book on the shelf")))
[('Mr.', 'NNP'), ('Jones', 'NNP'), ('saw', 'VBD'), ('the', 'DT')
('book', 'NN'), ('on', 'IN'), ('the', 'DT'), ('shelf', None)]
```

The UnigramTagger assigns the default tag None to words that are not in the training data (eg *shelf*)

We can combine taggers to ensure every word is tagged:

```
>>> unigram_tagger = tag.Unigram(cutoff=0,backoff=NN_CD_tagger)
>>> unigram_tagger.train(train_sents)
>>> list(unigram_tagger.tag(tokenize.whitespace("Mr. Jones saw
the book on the shelf")))
[('Mr.', 'NNP'), ('Jones', 'NNP'), ('saw', 'VBD'), ('the', 'DT')
('book', 'VB'), ('on', 'IN'), ('the', 'DT'), ('shelf', 'NN')]
```

# Rule-based tagging using constraints

Lexicon based, listing morphological and syntactic features for each word: includes inflected and derived forms, with a separate entry for each PoS: show/V: PRESENT -SG3 VFIN

show/N: NOMINATIVE SG

# Rule-based tagging using constraints

Lexicon based, listing morphological and syntactic features for each word: includes inflected and derived forms, with a separate entry for each PoS: show/V: PRESENT -SG3 VFIN show/N: NOMINATIVE SG

Multi-stage tagging:

- Return all possible POS tags (and associated features) for each word
- 2. Apply constraints (rules) to remove parts-of-speech inconsistent with the context
- ► More details in Jurafsky and Martin (1st ed. sec 8.4; 2nd ed. sec 5.4)



# Transformation-based tagging

► A rule-based system...

# Transformation-based tagging

- ► A rule-based system...
- ...but the rules are learned from a corpus

# Transformation-based tagging

- A rule-based system...
- ...but the rules are learned from a corpus
- Basic approach: start by applying general rules, then successively refine with additional rules that correct the mistakes
- ▶ Learn the rules from a corpus, using a set of rule templates, eg:
  - Change tag a to b when the following word is tagged z
- Choose the best rule each iteration
- ► (see module nltk\_lite.tag.brill), also sec 5.5/8.5 in J&M



# **Evaluating taggers**

- Basic idea: compare the output of a tagger with a human-labelled gold standard
- ▶ Need to compare how well an automatic method does with the agreement between people
- ▶ The best automatic methods have an accuracy of about 96-97% when using the (small) Penn treebank tagset (but this is still an average of one error every couple of sentences...)
- ▶ Inter-annotator agreement is also only about 97%
- ► A good unigram baseline (with smoothing) can obtain 90-91%!



# Evaluating taggers in NLTK

NLTK provides a function tag.accuracy to automate evaluation. It needs to be provided with a tagger, together with some text to be tagged and the gold standard tags.

# Evaluating taggers in NLTK

NLTK provides a function tag.accuracy to automate evaluation. It needs to be provided with a tagger, together with some text to be tagged and the gold standard tags.

We can make print more prettily:

```
def print_accuracy(tagger, data):
    print '%3.1f%%' % (100 * tag.accuracy(tagger, data))
```

# Evaluating taggers in NLTK

NLTK provides a function tag.accuracy to automate evaluation. It needs to be provided with a tagger, together with some text to be tagged and the gold standard tags.

We can make print more prettily:

```
def print_accuracy(tagger, data):
    print '%3.1f%%' % (100 * tag.accuracy(tagger, data))
>>> print_accuracy(NN_CD_tagger, test_sents)
18.2%
>>> print_accuracy(unigram_tagger, train_sents)
93.7%
>>> print_accuracy(unigram_tagger, test_sents)
84.0%
```

### Error analysis

- ➤ The % correct score doesn't tell you everything it is useful know what is misclassified as what
- ▶ Confusion matrix: A matrix (ntags x ntags) where the rows correspond to the correct tags and the columns correspond to the tagger output. Cell (i, j) gives the count of the number of times tag i was classified as tag j
- The leading diagonal elements correspond to correct classifications
- Off diagonal elements correspond to misclassifications
- Thus a confusion matrix gives information on the major problems facing a tagger (eg NNP vs. NN vs. JJ)
- See section 4.4 of the NLTK tutorial on Tagging



# Summary

- Reading: Jurafsky and Martin (1st ed: chapter 8; 2nd ed: chapter 5); NLTK tagging tutorial
- Parts of speech and tagsets
- Tagging
- Constructing simple taggers in NLTK
- Rule-based tagging
- Evaluating taggers
- ▶ Next two lectures: statistical tagging using HMMs/n-grams