
1 ICL/Intro to Parsing CFGs/2005-11-03

Contents

1 Outline 1

2 What is Parsing? 1

3 Parsing Strategies 2
3.1 Top-Down . 3
3.2 Bottom-Up . 3

4 Left Corner Parsing 4

5 Problems 5
5.1 Left Recursion . 5
5.2 Ambiguity . 5

6 Summary 6

2 What is Parsing?

Review CFGs

• Sets of terminals (either lexical items or parts of speech).

• Sets of non-terminals (the constituents of the language).

• Sets of rules (or ‘productions’) of the form A → α, where α is a string of zero or more terminals and
non-terminals.

Derives:

• If grammar G contains the rule A → γ and αAβ is a string in (N ∪Σ)∗, then αAβ directly derives
αγβ in G: αAβ ⇒ αγβ.

• ∗⇒ (derives) is the reflexive, transitive closure of ⇒; e.g., S ∗⇒ α if S ∗⇒ α0, α0
∗⇒ α1, . . . , αn

∗⇒ α.

Parsing
Assign a correct tree to a string, given a grammar G, i.e.,

• The leaves of the tree cover all and only the input.

• The tree corresponds to a valid derivation according to G.

• ‘correct’:

– means the tree is consistent with the input and the grammar;

– doesn’t mean that it’s the proper way to represent English in any general sense.

Declarative vs./ Procedural Knowledge

• CFGs are declarative: they tell us what the well-formed structures and strings are.

• Parsers are procedural: they tell us how to compute the structure(s) for a given string.

Parsing as Search
Syntactic parsing can be viewed as a search (cf. Jurafsky & Martin):

• search space: all possible trees generated by the grammar;

• search space defined by the grammar;

• search guided by the structure of the space and the input.

Mini Grammar & Lexicon

S → NP VP | Aux NP VP | VP Det → that | this | a
NP → Det Nom | PropN N → book | flight | meal
Nom → Nom PP | N Nom V → book | include | prefer
PP → P NP Aux → does
VP → V | V NP P → from | to | on
Nom → N PP | N Nom
PropN → Houston | TWA

Example Parse Tree
The parse of the sentence Book that flight using the mini grammar and lexicon

S

VP

NP

Nom

N

flight

Det

that

V

Book

3 Parsing Strategies

Parsing
What kind of constraints can be used to connect the grammar and our example sentence when searching for
the parse tree?

• top-down (goal-directed) strategy:

– e.g., tree should have one root (grammar constraint)

• bottom-up (data-driven) strategy:

– e.g., tree should have 3 leaves (input sentence constraint)

A Note on the Input
We assume the following:

• The input is not tagged.

• The input consists of unanalyzed word tokens.

• e words in the input are ’known’ (i.e., are leaves of lexical rules in grammar).

• All the words in the input are available simultaneously (i.e., they’re buffered).

2

3.1 Top-Down

Top-Down Parsing

• When the search is primarily goal- or expectation-driven (by the structure of the grammar), we’re
doing a top-down search.

• Primary goal is to find a tree rooted at S that derives the input string.

• Trees are built from the root node S to the leaves.

• NLTK-Lite demo of Recursive Descent parser

>>> from nltk_lite.draw.rdparser import demo
>>> demo()

3.2 Bottom-Up

Bottom-Up Parsing

• When the search is primarily data-driven (by the input string), we’re doing a bottom-up search.

• The primary consideration here is that all of the sub-trees of the final tree must hook up with the start
symbol.

• NLTK-Lite demo of Shift-Reduce parser

>>> from nltk_lite.draw.srparser import demo
>>> demo()

Search Control Issues
Some parameters still need to be made explicit:

• non-parallel strategies (e.g., depth-first vs. breadth-first);

• which node in the tree to expand next (e.g., leftmost);

• which of the applicable grammar rule to try (e.g., order in the grammar)

Top-Down vs. Bottom-Up
There are advantages and disadvantages to both.
Top-Down:

• only searches in the space of ‘reasonable’ answers;

• suggests hypotheses that are not consistent with the input string;

• has problems with left-recursion (covered later).

Bottom-Up

• only forms hypotheses consistent with the input strings;

• suggests hypotheses that make no sense ‘globally’.

3

4 Left Corner Parsing

A Hybrid Approach

• Neither top-down nor bottom-up adequately exploit all the constraints.

• There are many way to combine top-down expectations with bottom-up data to get a more efficient
search.

• The most popular methods use one method as the basic search control strategy to generate trees, and

• then use constraints from the other method to dynamically filter out “bad” structures.

• Example: top-down parsing with bottom-up filtering.

Left Corner Parsing

• Consider a top-down parser parsing the following input:

Will this flight arrive on time?

Assume that the grammar contains the following S rules:

S→ NP VP

S→ Aux NP VP

S→ VP

• Left-Corner Observation: in a successful parse, the current input word is first in the derivation of the
unexpanded node.

Left Corners

• A category B (terminal or non-terminal) is a left corner of a tree rooted in A if A derives Bα.

• Left corners for each non-terminal in our mini-grammar:
Category Left Corners

S Det, Proper-Noun, Aux, V
NP Det, Proper-Noun
Nom N
VP V

Left Corners, 2
VP

NP

Nom

N

flight

A

early

Det

a

V

prefer

• V and prefer are both left-corners of the tree rooted in VP.

• Filtering with left corners:

– Only consider an expansion if current input can serve as the left-corner of that expansion.

4

5 Problems

5.1 Left Recursion

Left Recursion
In top-down, depth-first, left-to-right parsers, a left recursive grammar can cause the search to never termi-
nate.

• A → Aβ

Nom → Nom PP

VP → VP PP

S → S and S

• A derives Aβ (i.e., the grammar contains a non-terminal that contains itself anywhere along its leftmost
branch)

NP→ NPposs Nom

NPposs → NP ’s

Left Recursion, cont.

• Demo example: Nom→ Nom PP

Some (poor) solutions:

• Rewrite the grammar to a weakly equivalent one (how?)

– might not get a correct or useful parse tree.

• Limit the depth during search

– limit is arbitrary.

5.2 Ambiguity

Ambiguity
Given a grammar, Global Ambiguity potentially leads to multiple parses for the same input (if we force
it to).

I saw a woman with a telescope.

Local Ambiguity, in contrast, leads to hypotheses that are locally reasonable but eventually lead nowhere
and result in inefficient backtracking. Filtering helps a little.

Book that flight.

Common Structural Ambiguities

• See this week’s Lab Exercises.

5

Why is Ambiguity Problematic?

• There are potentially an exponential number of parses for a sentence.

– Returning all structurally valid parses isn’t always a good idea.

• Some solutions:

– exploit regularities in the search space to derive common subparts only once;

– heuristic search strategies;

– incorporate semantics into the disambiguation process.

6 Summary

Summary

• Important parsing concepts:

– Top-down vs. Bottom-up strategies

– Examples of each:

∗ Recursive Descent
∗ Shift-Reduce

– Backtracking

– Global vs. Local Ambiguity

Reading

• Jurafsky and Martin Chapter 10

• NLTK Parsing Tutorial

6

	Outline
	What is Parsing?
	Parsing Strategies
	Top-Down
	Bottom-Up

	Left Corner Parsing
	Problems
	Left Recursion
	Ambiguity

	Summary

