
1 ICL/Chart Parsing CFGs/2005-11-07

Contents

1 Outline 1

2 Review Top-down Parsing 1

3 Chart Parsing 2
3.1 Overview . 2
3.2 Charts as Graphs . 3
3.3 The Basic Idea . 5
3.4 Example States . 6

4 The Earley Algorithm 7
4.1 Parsing Example . 9
4.2 Left Recursion . 10

5 Reading 10

2 Review Top-down Parsing

Parsing
Parsing with a CFG is the task of assigning a correct tree (or derivation) to a string given some grammar.
A correct tree is:

• consistent with the grammar, and

• the leaves of the tree cover all and only the words in the input.

There may be a very large number of correct trees for any given input . . .

Problems that arise

• Left Recursion

• Ambiguity

• Inefficiencies due to backtracking

Common substructures

• Despite ambiguity and backtracking there are commons substructures to be taken advantage of.

• Consider parsing the following NP:

a flight from Indianapolis to Houston on TWA

with the following rules:

NP → Det Nom

Nom → Nom PP

• What happens with a top-down parser?

Backtracking
NP

Nom

flight

Det

a from Indianopolis to Houston on TWA

NP

Nom

PP

from Indianapolis

Nom

flight

Det

a

to Houston on TWA

Backtracking, cont
NP

Nom

PP

to Houston

Nom

PP

from Indianapolis

Nom

flight

Det

a

on TWA

Backtracking, cont
NP

Nom

PP

on TWA

Nom

PP

to Houston

Nom

PP

from Indianapolis

Nom

flight

Det

a

3 Chart Parsing

3.1 Overview

Dynamic Programming
Our current algorithm builds valid trees, discards them during backtracking, then rebuilds them.

• the subtree for a flight was derived 4 times.

Dynamic programming is one answer to problems that have sub-problems that get solved again and again
We’ll consider an algorithm that fills a table with solutions to subproblems that:

• does a parallel top-down search with bottom-up filtering

• does not do repeated work

• solves the left-recursion problem

2

Dynamic Programming and Parsing

• Systematically fill in tables of solutions to subproblems.

• When complete, the table contains all possible solutions to all of the subproblems needed to solve the
whole problem

• For parsing:

– the table stores subtrees for constituents.

– Solves reparsing inefficiencies, because subtrees are not reparsed but looked up.

– Solves ambiguity explosions, because the table implicitly stores all parses.

– Each subtree is represented only once and shared by all parses that need it.

Lexical Edges

․ book ․ that ․ flight ․
V Det N

0 1 2 3

3.2 Charts as Graphs

Nonterminal Edges: NP

․ book ․ that ․ flight ․
V Det N

0 1 2 3

NP

Nonterminal Edges: VP

3

․ book ․ that ․ flight ․
V Det N

0 1 2 3

NP
VP

Nonterminal Edges: Rules

• Useful to label arcs with rules rather than categories:

․ book ․ that ․ flight ․
 V → book Det → that N → flight

0 1 2 3

NP → Det N

VP → V NP

Incomplete Edges

• Recall that the parser can make predictions on the basis of rules:

– I’m trying to expand an VP, and I’ve found a V so I’ll start looking for an NP.

• Record incomplete constituents with dotted rules:

– Dot on the RHS of a rule shows what wev́e found already: VP → V • NP

– We can use this as a label for an incomplete constituent.

Incomplete Edges, cont.

4

․ book ․ that ․ flight ․
 V → book Det → that N → flight

0 1 2 3

NP → Det N

VP → V NP

VP → V * NP

3.3 The Basic Idea

Dynamic Programming and Parsing
The Earley algorithm:

• fills a table (the chart) in a single left-to-right pass over the input.

• The chart will be size N + 1, where N is the number of words in the input.

• Chart entries are associated with the gaps between the words — like slice indexing in Python.

• For each word position in the sentence, the chart contains a set of edges representing the partial parse
trees generated so far.

• So Chart[0] is the set of edges representing the parse before looking at a word.

States

• J&M call the chart entries states.

• The chart entries represent three distinct kinds of things:

– completed constituents;

– in-progress constituents; and

– predicted constituents

• The three kinds of states correspond to different dot locations in dotted rules:

Completed: VP → V NP •

In-progress: NP → Det • Nom

Predicted: S → • VP

5

Incomplete NP Edge: Self-loop

․ book ․ that ․ flight ․
 V → book Det → that N → flight

0 1 2 3

NP → * Det Nom

States, cont.

• Given dotted rules like those we’ve just seen, we need to record:

– where the represented constituent is in the input, and

– what its parts are.

• So we add a pair of coordinates [x, y] to the state:

– A → α, [x, y]

– x indicates the position in input where the state begins

– y indicates position of dot

Example with coordinates

․ book ․ that ․ flight ․
 V → book Det → that N → flight

0 1 2 3

NP → Det N * [1,3]

VP → V NP * [0,3]

VP → V * NP [0,1]

3.4 Example States

States, cont.
Example states in parsing Book that flight :

6

1. S → • VP, [0,0]

• First 0 indicates that the constituent begins at the start of the input.

• Second 0 indicates that the dot also begins at start of input, and thus indicates a top-down
prediction.

2. NP → Det • Nom, [1,2]

• the NP begins at position 1

• the dot is at position 2

• Det has been successfully completed

• Nom is predicted next

States, cont.

1. VP → V NP •, [0,3]

• VP is completed

• no further predictions from this rule

• a successful parse that spans the entire input

Success
The final answer is found by looking at the last column of the table. In particular, for an input of N words,
if we find the following kind of state in the chart then we’ve succeeded:

S → α •, [0,N]

4 The Earley Algorithm

Parsing
Parsing is sweeping through the chart creating the three kinds of states as we go. States are never removed,
and we never backtrack.

• New predicted states are based on existing table entries (predicted, or in-progress) that predict a certain
constituent at that spot.

• New in-progress states are created by updating older states to reflect the fact that previously expected
completed constituents have been located.

• New completed states are created when the dot in an in-progress state moves to the end.

More Specifically

1. Predict all the states you can.

2. Read an input.

• See what predictions you can match.

• Extend matched states, add new predictions.

• Go to next state (goto 2)

3. At the end, see if state[N + 1] contains a complete S.

7

Earley Algorithm
The Earley algorithm has three main functions that do all the work:

Predictor: Adds predictions into the chart

Completer: Moves the dot to the right when new constituents are found

Scanner: Reads the input words and enters states representing those words into the chart

Predictor

procedure Predictor((A → α • B β, [i, j]))
for each (B → γ) in Grammar-Rules-For(B, grammar) do

Enqueue((B → • γ, [j, j]), chart[j])
end

• Intuition: new states represent top-down expectations.

• Applied when a state has a non-terminal to the right of a dot that is not a part-of-speech.

• Generates one new state for each alternative expansion of the non-terminal in the grammar.

• Adds states to the same chart entry as generating state.

Completer

procedure Completer((B → γ •, [j, k]))
for each (A → α • B β, [i, j]) in chart[j] do

Enqueue((A → α B • β, [i, k]), chart[k])
end

• Intuition: parser has discovered a constituent, so must find and advance states that were looking for
this grammatical category at this position in input.

• Applied when dot has reached right end of rule.

• New states are generated by copying old state and advancing dot over expected category.

• Adds new states to same chart entry as generating state.

Scanner

procedure Scanner((A → α • B β, [i, j]))
if B ∈ Parts-of-Speech(word[j]) then

Enqueue((B → word[j] •, [j, j + 1]), chart[j+1])

• New states for predicted part-of-speech.

• Applicable when part-of-speech is to the right of a dot.

• Adds states to next chart entry.

Note: Earley parser uses top-down predictions to help disambiguate part-of-speech ambiguities. Only those
parts-of-speech of a word that are predicted by some state will find their way into the chart.

8

4.1 Parsing Example

Mini grammar and lexicon

S → NP VP | Aux NP VP | VP Det → that | this | a
NP → Det Nom | PropN N → book | flight | meal
Nom → Nom PP | N Nom V → book | include | prefer
PP → P NP Aux → does
VP → V | V NP P → from | to | on
Nom → N PP | N Nom PropN → Houston | TWA

Example: Chart[0] and Chart[1]
Chart[0]

γ → • S [0,0] Dummy start state
S → • NP VP [0,0] Predictor
S → • Aux NP VP [0,0] Predictor
S → • VP [0,0] Predictor
NP → • Det NOMINAL [0,0] Predictor
NP → • Proper -Noun [0,0] Predictor
VP → • Verb [0,0] Predictor
VP → • Verb NP [0,0] Predictor

Chart[1]
Verb → book • [0,1] Scanner
VP → Verb • [0,1] Completer
S → VP • [0,1] Completer
VP → Verb • NP [0,1] Completer
NP → • Det NOMINAL [1,1] Predictor
NP → • Proper -Noun [1,1] Predictor

Example: Chart[1] and Chart[2]
Chart[1]

Verb → book • [0,1] Scanner
VP → Verb • [0,1] Completer
S → VP • [0,1] Completer
VP → Verb • NP [0,1] Completer
NP → • Det NOMINAL [1,1] Predictor
NP → • Proper −Noun [1,1] Predictor

Chart[2]
Det → that • [1,2] Scanner
NP → Det•NOMINAL [1,2] Completer
NOMINAL → • Noun [2,2] Predictor
NOMINAL → • Noun NOMINAL [2,2] Predictor

Example: Chart[3]

9

Chart[3]
Noun → flight • [2,3] Scanner
NOMINAL → Noun • [2,3] Completer
NOMINAL → Noun • NOMINAL [2,3] Completer
NP → Det NOMINAL • [1,3] Completer
VP → Verb NP • [0,3] Completer
S → VP • [0,3] Completer
NOMINAL → • Noun [3,3] Predictor
NOMINAL → • Noun NOMINAL [3,3] Predictor

4.2 Left Recursion

Examples: Left Recursion
What about parsing the NPa flight from Denver to Boston with the following rules:

NP → NP PP

NP → Det Nom

NP → Proper-Noun

• We construct the state (NP → • NP PP, [0,0]) and add it to chart [0]

• The Predictor function then requires us to find a rule which expands the (non-lexical) category
immediately to the right of the dot.

• So let’s pick the first rule above, and Enqueue the state (NP → • NP PP, [0,0]).

• But this is already in the state, so we don’t add it again.

5 Reading

Reading

• Read section 10.4 of J&M

• Read the NLTK-Lite Tutorial on Chart Parsing

10

	Outline
	Review Top-down Parsing
	Chart Parsing
	Overview
	Charts as Graphs
	The Basic Idea
	Example States

	The Earley Algorithm
	Parsing Example
	Left Recursion

	Reading

