Chart Parsing

Ewan Klein
ewan@inf.ed.ac.uk

ICL — 7 November 2005

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Review Top-down Parsing

Chart Parsing
Overview
Charts as Graphs
The Basic Idea
Example States

The Earley Algorithm
Parsing Example
Left Recursion

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Review Top-down Parsing

Parsing

Parsing with a CFG is the task of assigning a correct tree (or
derivation) to a string given some grammar.
A correct tree is:

» consistent with the grammar, and
> the leaves of the tree cover all and only the words in the input.

There may be a very large number of correct trees for any given
input ...

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Review Top-down Parsing

Problems that arise

» Left Recursion
» Ambiguity

» Inefficiencies due to backtracking

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Review Top-down Parsing

Common substructures

» Despite ambiguity and backtracking there are commons
substructures to be taken advantage of.

» Consider parsing the following NP:
a flight from Indianapolis to Houston on TWA

with the following rules:

NP — Det Nom
Nom — Nom PP

» What happens with a top-down parser?

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Review Top-down Parsing

Backtracking

NP

N

Det Nom

a flight from Indianopolis to Houston on TWA

L
=
o
3
-
R

f/lght from Indianapo/is to Houston on TWA

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Review Top-down Parsing

Backtracking, cont

NP
/\
Det Nom
/\
L Nom PP
/\ A
Nom PP to Houston
flight from Indianapolis on TWA

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Review Top-down Parsing

Backtracking, cont

NP
/\
Det Nom
/\
L Nom PP
/\ A
Nom PP on TWA
/\ A
Nom PP to Houston

flight from Indianapolis

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Chart Parsing

Dynamic Programming

Our current algorithm builds valid trees, discards them during
backtracking, then rebuilds them.

> the subtree for a flight was derived 4 times.
Dynamic programming is one answer to problems that have
sub-problems that get solved again and again
We'll consider an algorithm that fills a table with solutions to
subproblems that:
» does a parallel top-down search with bottom-up filtering
» does not do repeated work

» solves the left-recursion problem

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Chart Parsing

Dynamic Programming and Parsing

» Systematically fill in tables of solutions to subproblems.

» When complete, the table contains all possible solutions to all
of the subproblems needed to solve the whole problem

» For parsing:

> the table stores subtrees for constituents.

» Solves reparsing inefficiencies, because subtrees are not
reparsed but looked up.

» Solves ambiguity explosions, because the table implicitly stores
all parses.

» Each subtree is represented only once and shared by all parses
that need it.

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Chart Parsing

Lexical Edges

/b\{at\m

ook

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Nonterminal Edges: NP

NP
V Det N
/boo>‘{rkat\‘ flight ®.
0 1 2

Ewan Klein ewan@inf.ed.ac.uk

Nonterminal Edges: VP

VP

Det N

7 book L that flight X
0 1 2 3

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Chart Parsing

Exampl

Nonterminal Edges: Rules

» Useful to label arcs with rules rather than categories:

VP - V NP

NP — Det N

Det - that N - flight

= book » that flight =
0 1 2 3

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Chart Parsing

Incomplete Edges

» Recall that the parser can make predictions on the basis of
rules:

» I'm trying to expand an VP, and I've found a V so I'll start
looking for an NP.

» Record incomplete constituents with dotted rules:

» Dot on the RHS of a rule shows what weve found already:
VP —V e« NP
» We can use this as a label for an incomplete constituent.

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Incomplete Edges, cont.

VP - V NP

NP - Det N
VP - V * NP

Det - that N — flight

0 1 2 3

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Chart Parsing

Example States

Dynamic Programming and Parsing

The Earley algorithm:
» fills a table (the chart) in a single left-to-right pass over the
input.
» The chart will be size N + 1, where N is the number of words
in the input.
» Chart entries are associated with the gaps between the words
— like slice indexing in Python.

» For each word position in the sentence, the chart contains a
set of edges representing the partial parse trees generated so
far.

» So Chart[0] is the set of edges representing the parse before
looking at a word.

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Chart Parsing

ample States

States

» J&M call the chart entries states.

» The chart entries represent three distinct kinds of things:

» completed constituents;
> in-progress constituents; and
> predicted constituents

» The three kinds of states correspond to different dot locations
in dotted rules:
Completed: VP — VNP «
In-progress: NP — Det « Nom
Predicted: S — o VP

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Incomplete NP Edge: Self-loop

NP - * Det Nom

V - book Det - that N — flight

L NGO\

= book » that W flight
0 1 2 3

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

aphs
Chart Parsing The Basic Idea
Example States

States, cont.

> Given dotted rules like those we've just seen, we need to
record:

» where the represented constituent is in the input, and
» what its parts are.

» So we add a pair of coordinates [x, y] to the state:

> A= a, [x,y]
» x indicates the position in input where the state begins
» y indicates position of dot

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Example with coordinates

VP - V NP * [0,3]

NP — Det N * [1,3]
VP - V * NP [0,1]

Det - that N — flight

Chart Parsing

States, cont.

Example states in parsing Book that flight:
1. S — « VP, [0,0]

» First 0 indicates that the constituent begins at the start of the
input.

» Second 0 indicates that the dot also begins at start of input,
and thus indicates a top-down prediction.

2. NP — Det « Nom, [1,2]

the NP begins at position 1

the dot is at position 2

Det has been successfully completed
Nom is predicted next

v vy VvYy

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Chart Parsing The Basic Ide
Example States

States, cont.

1. VP — V NP s, [0,3]

» VP is completed
» no further predictions from this rule
» a successful parse that spans the entire input

Ewan Klein ewan@inf.ed.ac.uk rt Parsing

(0]
Charts as Graphs

Chart Parsing fhe Basic Idea
Example States

Success

The final answer is found by looking at the last column of the
table. In particular, for an input of N words, if we find the
following kind of state in the chart then we've succeeded:

S—ae [ON]

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

The Earley Algorithm

Parsing

Parsing is sweeping through the chart creating the three kinds of
states as we go. States are never removed, and we never backtrack.

» New predicted states are based on existing table entries
(predicted, or in-progress) that predict a certain constituent at
that spot.

» New in-progress states are created by updating older states to
reflect the fact that previously expected completed
constituents have been located.

» New completed states are created when the dot in an
in-progress state moves to the end.

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

The Earley Algorithm

More Specifically

1. Predict all the states you can.
2. Read an input.

» See what predictions you can match.
» Extend matched states, add new predictions.
» Go to next state (goto 2)

3. At the end, see if state[N + 1] contains a complete S.

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

The Earley Algorithm

Earley Algorithm

The Earley algorithm has three main functions that do all the work:
Predictor: Adds predictions into the chart

Completer: Moves the dot to the right when new constituents
are found

Scanner: Reads the input words and enters states representing
those words into the chart

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

The Earley Algorithm

Predictor

procedure PREDICTOR((A — « e B 3, [i,j]))
for each (B — +) in GRAMMAR-RULES-FOR(B, grammar)
do
ENQUEUE((B — o7, [j,J]), chart])])
end

» Intuition: new states represent top-down expectations.

» Applied when a state has a non-terminal to the right of a dot
that is not a part-of-speech.

» Generates one new state for each alternative expansion of the
non-terminal in the grammar.

» Adds states to the same chart entry as generating state.

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

The Earley Algorithm

Completer

procedure COMPLETER((B — v o, [j,k]))
for each (A — « e B 3, [i,j]) in chart]j] do
ENQUEUE((A — « B e 3, [i,k]), chart[k])
end

» Intuition: parser has discovered a constituent, so must find
and advance states that were looking for this grammatical
category at this position in input.

» Applied when dot has reached right end of rule.

» New states are generated by copying old state and advancing
dot over expected category.

» Adds new states to same chart entry as generating state.

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

The Earley Algorithm

Scanner

procedure SCANNER((A — « e B 3, [i,j]))
if B € PARTS-OF-SPEECH(word[j]) then
ENQUEUE((B — word[j] e, [j,j + 1]), chart[j+1])

» New states for predicted part-of-speech.
» Applicable when part-of-speech is to the right of a dot.
» Adds states to next chart entry.
Note: Earley parser uses top-down predictions to help disambiguate

part-of-speech ambiguities. Only those parts-of-speech of a word
that are predicted by some state will find their way into the chart.

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Parsing Example
Left Recursion

The Earley Algorithm

Mini grammar and lexicon

S — NP VP [Aux NP VP | VP Det — that | this | a

NP — Det Nom | PropN N — book | flight | meal
Nom — Nom PP | N Nom V — book | include | prefer
PP — P NP Aux — does

VP — V|V NP P — from | to | on

Nom — N PP | N Nom PropN — Houston | TWA

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

The Earley Algorithm

Parsing Example
Left Recursion

Example: Chart[0] and Chart[1]
Chart[0]
v — oS [0,0] Dummy start state
S — « NP VP [0,0] Predictor
S — e Aux NP VP [0,0] Predictor
S — « VP [0,0] Predictor
NP — o Det NOMINAL [0,0] Predictor
NP — o Proper-Noun [0,0] Predictor
VP — o Verb [0,0] Predictor
VP — e Verb NP [0,0] Predictor
Chart[1]
Verb — book [0,1] Scanner
VP — Verb e [0,1] Completer
S — VP [0,1] Completer

VP — Verb e NP

Ewan Klein ewan@inf.ed.ac.uk

od
Chart Parsing

[0,1] Completer

Parsing Example
Left Recursion

The Earley Algorithm

Example: Chart[1] and Chart[2]

Chart[1]
Verb — book e [0,1] Scanner
VP — Verb e [0,1] Completer
S — VP [0,1] Completer
VP — Verb e NP [0,1] Completer

NP — o Det NOMINAL [1,1] Predictor
NP — e Proper — Noun [1,1] Predictor

Chart[2]
Det — that e [1,2] Scanner
NP — DeteNOMINAL [1,2] Completer
NOMINAL — « Noun [2,2] Predictor

NOMINAL — o Noun NOMINAL [2,2] Predictor

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Parsing Example
Left Recursion

The Earley Algorithm

Example: Chart[3]

Chart[3]
Noun — flight e [2,3] Scanner
NOMINAL — Noun e [2,3] Completer
NOMINAL — Noun « NOMINAL [2,3] Completer
NP — Det NOMINAL « [1,3] Completer
VP — Verb NP « [0,3] Completer
S — VP [0,3] Completer
NOMINAL — o Noun [3,3] Predictor

NOMINAL — o Noun NOMINAL [3,3] Predictor

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Parsing Example
Left Recursion

The Earley Algorithm

Examples: Left Recursion

What about parsing the NPa flight from Denver to Boston with
the following rules:

NP — NP PP

NP — Det Nom

NP — Proper-Noun

» We construct the state (NP — « NP PP, [0,0]) and add it to
chart[0]

» The PREDICTOR function then requires us to find a rule
which expands the (non-lexical) category immediately to the
right of the dot.

> So let's pick the first rule above, and ENQUEUE the state (NP
— « NP PP, [0,0]).
» But this is already in the state, so we don't add it again.

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

Reading

» Read section 10.4 of J&M
» Read the NLTK-Lite Tutorial on Chart Parsing

Ewan Klein ewan@inf.ed.ac.uk Chart Parsing

	Outline
	Review Top-down Parsing
	Chart Parsing
	Overview
	Charts as Graphs
	The Basic Idea
	Example States

	The Earley Algorithm
	Parsing Example
	Left Recursion

