1 ICL/Context Free Grammars/2005-10-31

Contents

1	Outline	1
2	What is a Context Free Grammar? 2.1 Some Definitions 2.2 Trees	$ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} $
3	Example CFG for English3.1 Constituency3.2 Recursion3.3 Ambiguity	4 6 7 8
4	Challenges for CFGs 4.1 Agreement 4.2 Subcategorization 4.3 Unbounded Dependencies	9 9 10 11
5	Summary	11

2 What is a Context Free Grammar?

Syntax

- How words are combined to form phrases; and
- how phrases are combined to form sentences.
- New concept: Constituency
- Groups of words may behave as a single unit or constituent,
 - They ate pizza at 8 pm.
 - They ate pizza then. [substitution by pro-form]
 - At 8 pm, they ate pizza. [preposing]
 - When did they eat pizza? At 8 pm. [constituent answer]
 - They ate pizza at 6 pm and at 8 pm. [coordinate conjunct]

Syntax in CL

Syntactic analysis used to varying degrees in applications such as:

- Grammar Checkers
- Spoken Language Understanding
- Question Answering systems
- Information Extraction
- Automatic Text Generation
- Machine Translation

Typically, fine-grained syntactic analysis is a prerequisite for fine-grained semantic interpretation.

Context Free Grammars (CFGs)

- Capture constituency and ordering;
- formalise descriptive linguistic work of the 1940s and '50s;
- are widely used in linguistics.
- CFGs are somewhat biased towards languages like English which have relatively fixed word order.
- Most modern linguistic theories of grammar incorporate some notions from context free grammar.

2.1 Some Definitions

Context Free Grammars (CFGs)

Formally, a CFG is a 4-tuple $\langle N, \Sigma, P, S \rangle$, where

- N is a set of non-terminal symbols (e.g., syntactic categories)
- Σ a set of terminal symbols (e.g., words)
- P a set of productions (rules) of the form $A \to \alpha$, where
 - -A is a non-terminal, and
 - $-\alpha$ is a string of symbols from the set $(\Sigma \cup N)^*$ (i.e., both terminals and non-terminals)
- a designated start symbol S

Example CFG

Let $G = \langle N, \Sigma, P, S \rangle$, where

- $N = \{\mathsf{S}, \mathsf{NP}, \mathsf{VP}, \mathsf{Det}, \mathsf{Nom}, \mathsf{V}, \mathsf{N}\}$
- $\Sigma = \{a, flight, left\}$

•
$$P = \{ S \rightarrow NP VP \}$$

 $\begin{array}{l} \mathsf{NP} \rightarrow \mathsf{Det} \quad \mathsf{Nom}, \\ \mathsf{Nom} \rightarrow \mathsf{N}, \\ \mathsf{VP} \rightarrow \mathsf{V}, \\ \mathsf{Det} \rightarrow a, \\ \mathsf{N} \rightarrow flight, \\ \mathsf{V} \rightarrow left \end{array}$

• S = S.

NP = 'noun phrase', VP = 'verb phrase', Det = 'determiner', Nom = 'Nominal', N = 'noun', V = 'verb'.

Derivations

• A derivation of a string from non-terminal A is the result of successively applying productions (from G) to A:

NP	
Det Nom	by NP \rightarrow Det Nom
a Nom	by $Det \to a$
a N	by $Nom \to N$
a flight	by $N \rightarrow flight$

- Can also write: $NP \Rightarrow Det Nom \Rightarrow a Nom \Rightarrow a N \Rightarrow a$ lingflight, where \Rightarrow means "yields in one rule application".
- G generates a flight (as a string of category NP).

Grammars and Languages

- CFG is an abstract model for associating structures with strings;
- not intended as model of how humans produce sentences.
- Sentences that can be derived by a grammar G belong to the formal language defined by G, and are called Grammatical Sentences with respect to G.
- Sentences that cannot be derived by G are Ungrammatical Sentences with respect to G...
- The language L_G defined by grammar G is the set of strings composed of terminal symbols that are derivable from the start symbol: $L_G = \{w | w \in \Sigma^* \text{ and } S \text{ derives } w\}$

2.2 Trees

Parse Trees

• Derivations can also be visualized as parse trees (or constituent structure trees), e.g.

- Trees express:
 - hierarchical grouping into constituents
 - grammatical category of constituents
 - left-to-right order of constituents

Parse Trees, cont.

• Trees can also be written as labeled bracketings:

```
[NP
[Det a]
[Nom [N flight]]]
```

- **Dominance**: node x dominates node y if there's a connected sequence of branches descending from x to y. E.g.
 - NP dominates non-terminals Det, Nom and N
- Immediate Dominance: node x immediately dominates node y if x dominates y and there's no distinct node between x and y. E.g.
 - NP immediately dominates Det and Nom.

Parse Trees, cont. NPDet Nom a N flight

- A node is called the daughter of the node which immediately dominates it.
- Distinct nodes immediately dominated by the same node are called sisters.
- A node which is not dominated by any other node is called the root node.
- Nodes which do not dominate any other nodes are called leaves.

CFG: As opposed to what?

- Regular Grammars:
 - All rules of the form $A \to xB$ or $A \to x$.
 - Equivalent to Regular Expressions.
 - Regarded as too weak to capture lingistic generalizations.
- Context Sensitive Grammars:
 - Allows rules of the form $XAY \to X\alpha Y$; i.e., the way in which A is expanded can depend on the context X_Y .
 - Regarded as 'too strong' can describe languages that aren't possible human languages.
 - Regular languages \subset Context Free languages \subset Context Sensitive languages

3 Example CFG for English

Grammars and Constituency

- A huge amount of skilled effort goes into the development of grammars for human languages can only scratch the surface here.
- There's lot's of research into English syntactic structure but also lots of disagreement.
- Various criteria for determining constituency:
 - substitution by pro-forms
 - preposing
 - constituent answers
 - coordination
- Some clear-cut decisions, but quite a lot of unclear ones too.

A Tiny Lexicon

Ň	\rightarrow	flight passenger	$\mid trip \mid morning \mid \ldots$
V	\rightarrow	is prefers like	need depend fly
А	\rightarrow	cheapest non-sto	$p \mid first \mid latest$
		other $ $ direct $ \dots$	
Pro	\rightarrow	$me \mid I \mid you \mid it \mid$	
PropN	\rightarrow	Alaska Baltimor	e Los Angeles
·		Chicago United	American
Det	\rightarrow	the $ a $ an $ $ this	$ these that \dots$
Р	\rightarrow	$from \mid to \mid on \mid ne$	
Conj	\rightarrow	and $ or but \dots$	
A Tiny	Gra	mmar	
S	\rightarrow	NP VP	$I + want \ a \ morning \ flight$
NP	\rightarrow	Pro	Ι
		PropN	Los Angeles
	ĺ	Det A Nom	the + next + passenger
	Í	Det Nom	a + flight
Nom	\rightarrow	Nom PP	$flight + to \ Los \ Angeles$
		N Nom	morning + flight
	Ì	Ν	trip
VP	\rightarrow	VP PP	leave + in the morning
		V NP	want + a flight
	İ	V NP PP	$sell + a \ ticket + to \ me$
	İ	V PP	depend + on the weather
PP	\rightarrow	P NP	from + Los Angeles

Example Noun Phrase

Example Noun Phrase: Heads

Example Verb Phrase

Arguments vs. Modifiers

- Arguments: 'essential participants' in an event
- Modifiers: optional additional information about an event
- As with other linguistic distinctions, some clear cases and some unclear ones.
- We've chosen to reflect the distinction in the parse trees:
 - arguments are sisters of V (or N)
 - modifiers are sisters of VP (or Nom)

Example Sentence

3.1 Constituency

- Kim ate pizza and Lee <u>did</u> too.
- What did Kim do? Ate pizza.
- Kim said she would eat pizza, and eat pizza she did.

Constituency in REs?

• Regular Expression:

(the|a)(other|non-stop)?(passenger|flight)prefers
(the|a)(other|non-stop)?(passenger|flight)

• No explicit representation of NP which can be 're-used' in different positions in a sentence.

Constituency in Regular Grammars?

3.2 Recursion

Recursive Structures

- There is no upper bound on the length of a grammatical English sentence.
 - Therefore the set of English sentences is infinite.
- A grammar is a finite statement about well-formedness.
 - To account for an infinite set, it has to allow iteration (e.g., X^+) or recursion.
- Recursive rules: where the non-terminal on the left-hand side of the arrow in a rule also appears on the right-hand side of a rule.

Recursive Structures, cont.

Direct recursion:	
$Nom \to Nom \ PP$	flight to Boston
$VP \rightarrow VP PP$	departed Miami at noon
	•
Indirect recursion:	
$S \rightarrow NP VP$	
$VP \rightarrow V S$	said that the flight was late

Recursion Example: Sentential Complements

Recursion Example: Possessives

Coordination

- I need [[NP the times] and [NP the fares]].
- a flight [[VP departing at 9a.m.] and [VP returning at 5p.m.]]
- [[s I depart on Wednesday] and [s I'll return on Friday]].

Any phrasal constituent XP can be conjoined with a constituent of the same type — XP to form a new constituent of type XP. General schema:

 $\mathsf{XP} \to \mathsf{XP} \ \textit{and} \ \mathsf{XP}$

3.3 Ambiguity

Syntactic Ambiguity

- Many kinds of syntactic (structural) ambiguity.
- PP attachment has received much attention:

PP Ambiguity

- Different structures naturally correspond to different semantic interpretations ('readings')
- Arises from independently motivated syntactic rules: $VP \rightarrow V \dots PP$ Nom \rightarrow Nom PP
- However, also strong, lexically influenced, preferences:
 - I bought [a book [on linguistics]]
 - I bought [a book] [on sunday]

4 Challenges for CFGs

Problem Areas for CFGs

- Agreement
- Subcategorization
- 'Movement' or unbounded dependencies

4.1 Agreement

Number Agreement

In English, some determiners agree in number with the head noun:

- This dog
- Those dogs
- \bullet * Those dog
- \bullet * This dogs

And verbs agree in number with their subjects:

- What flights leave in the morning?
- * What flight leave in the morning?

Number Agreement, cont.

$$\begin{split} & \text{Expand our grammar with multiple sets of rules?} \\ & \text{NP}_{\rm sg} \rightarrow \text{Det}_{\rm sg} \; \text{N}_{\rm sg} \\ & \text{NP}_{\rm pl} \rightarrow \text{Det}_{\rm pl} \; \text{N}_{\rm pl} \\ & \text{S}_{\rm sg} \rightarrow \text{NP}_{\rm sg} \; \text{VP}_{\rm sg} \\ & \text{S}_{\rm pl} \rightarrow \text{NP}_{\rm pl} \; \text{VP}_{\rm pl} \\ & \text{VP}_{\rm sg} \rightarrow \text{V}_{\rm sg} \; (\text{NP}) \; (\text{NP}) \; (\text{PP}) \\ & \text{VP}_{\rm pl} \rightarrow \text{V}_{\rm pl} \; (\text{NP}) \; (\text{NP}) \; (\text{PP}) \end{split}$$

- worse when we add person and even worse in languages with richer agreement (e.g., three genders).
- lose generalizations about nouns and verbs can't say property P is true of all words of category V.

4.2 Subcategorization

Subcategorization

Verbs have preferences for the kinds of constituents (cf. arguments) they co-occur with.

- I found the cat.
- *I disappeared the cat.
- It depends [PP on the question].
- **It depends* [PP {*to/from/by*} *the question*].

A traditional subcategorization of verbs:

- transitive (takes a direct object NP)
- intransitive

In more recent approaches, there might be as many as a hundred subcategorizations of verb.

Subcategorization, cont.

More examples:

- find is subcategorized for an NP (can take an NP complement)
- want is subcategorized for an NP or an infinitival VP
- *bet* is subcategorized for NP NP S

A listing of the possible sequences of complements is called the subcategorization frame for the verb. As with agreement, the obvious CFG solution yields rule explosion:

 $\begin{array}{l} \mathsf{VP} \rightarrow \mathsf{V}_{\mathrm{intr}} \\ \mathsf{VP} \rightarrow \mathsf{V}_{\mathrm{tr}} \ \mathsf{NP} \\ \mathsf{VP} \rightarrow \mathsf{V}_{\mathrm{ditr}} \ \mathsf{NP} \ \mathsf{NP} \end{array}$

Example Subcategorization Frames

Frame	Verb	Example
_	eat, sleep	I want to eat
NP	prefer, find, leave,	Find [NP the flight from Pittsburgh to
		Boston]
NP NP	show, give	Show [NP me] [NP airlines with flights
		from Pittsburgh]
NP PP	help, load,	Can you help [NP me] [PP with a flight]
VP_{inf}	prefer, want, need	I would prefer (VP _{inf} to go by United
		airlines]
S	mean	Does this mean [5 AA has a hub in
		Boston]?

4.3 Unbounded Dependencies

Unbounded Dependency (or Movement) Constructions

- *I gave __to the driver.
- I gave some money to the driver.
- \$5 [I gave __to the driver], (and \$1 I gave to the porter).
- He asked how much [I gave __to the driver].
- I forgot about the money which [I gave __to the driver].
- How much did you think [I gave __to the driver]?
- How much did you think he claimed [I gave __to the driver]?
- How much did you think he claimed that I said [I gave _____to the driver]?
- ...

5 Summary

Summary

- CFGs capture hierarchical structure of constituents in natural language.
- More powerful than REs, and can express recursive structure.
- Hard to get a variety of linguistic generalizations in 'vanilla' CFGs, though this can be mitigated with use of features (not covered here).
- Building a CFG for a reasonably large set of English constructions is a lot of work!

Reading

- Jurafsky & Martin, Chapter 9
- Parsing tutorial in NLTK-Lite