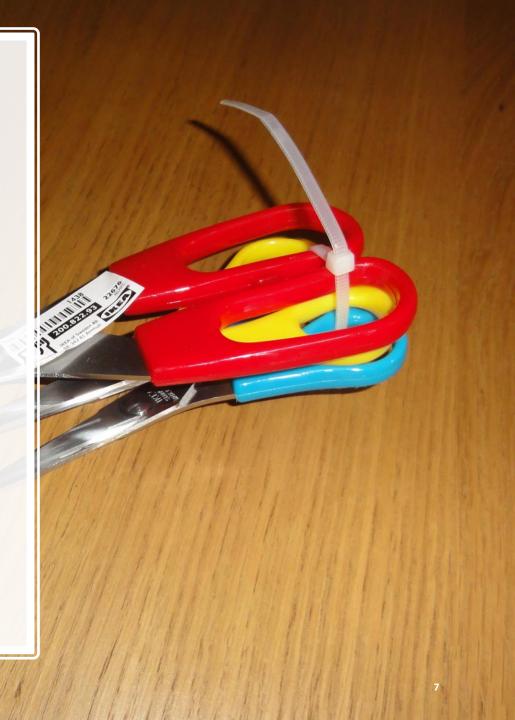
HCI: STUDY DESIGN

Dr Kami Vaniea

Today: designing studies to test usability

Step 1: Define what "usable" means Step 2: Identify your variables Step 3: Setup your study Step 4: Evaluate the outcome


The problem: You just built a new widget and now you need to evaluate it

Step 1: Define what "usable" means

A system which is undefined can never be wrong, it can only ever be surprising

Started by designing requirements

- Interviews with users
- Interviews with experts
- Contextual inquiries
- Surveys
- Focus groups
- Reading background literature
- Diary studies
- Artifact analysis

Define your usability goal

- This step is very similar to specifying tasks
- Identify what you think your users need to be able to do using your system or what kind of attitude you want them to have
- The goals need to be specific and easy to identify if they have or have not been completed
- Examples:
 - Find a stool on a shopping page and purchase it
 - Be willing to give the app 5 stars after interacting with it for the first time
- Bad examples:
 - Have fun using the site
 - Find a bus to go somewhere

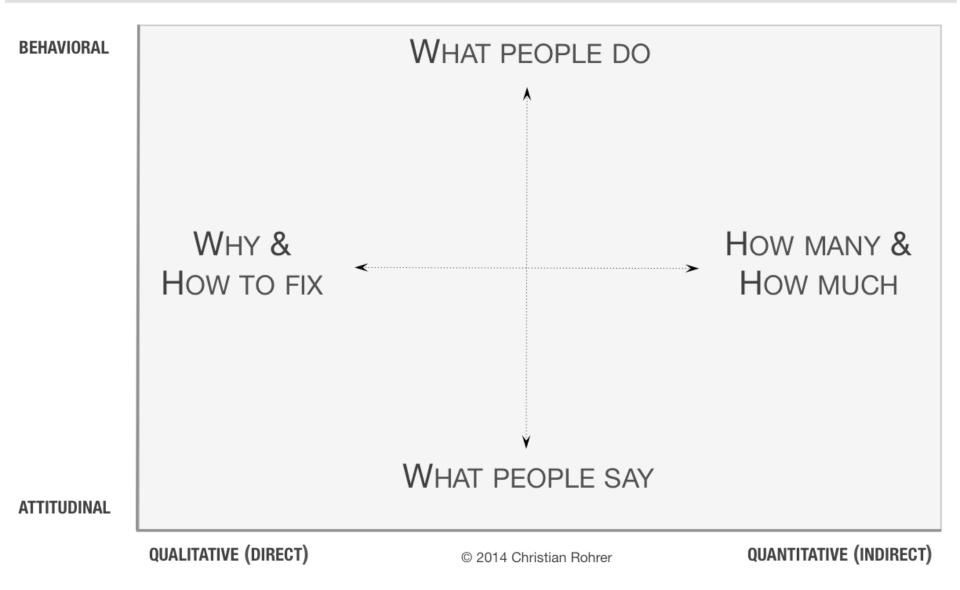
"Usable" could mean:

- User can accomplish a task in Y minutes
- User can accomplish task with no major errors
- User can learn to use the interface the first time they see it so that they can accomplish a task later
- More users buy products on the site
- Users buy more expensive products on the site
- Expert users can navigate from A to B in less than X seconds
- Users rate the app highly
- Interface breaks no major HCI heuristics
- Interface makes the client happy

Step 2: Identify your variables

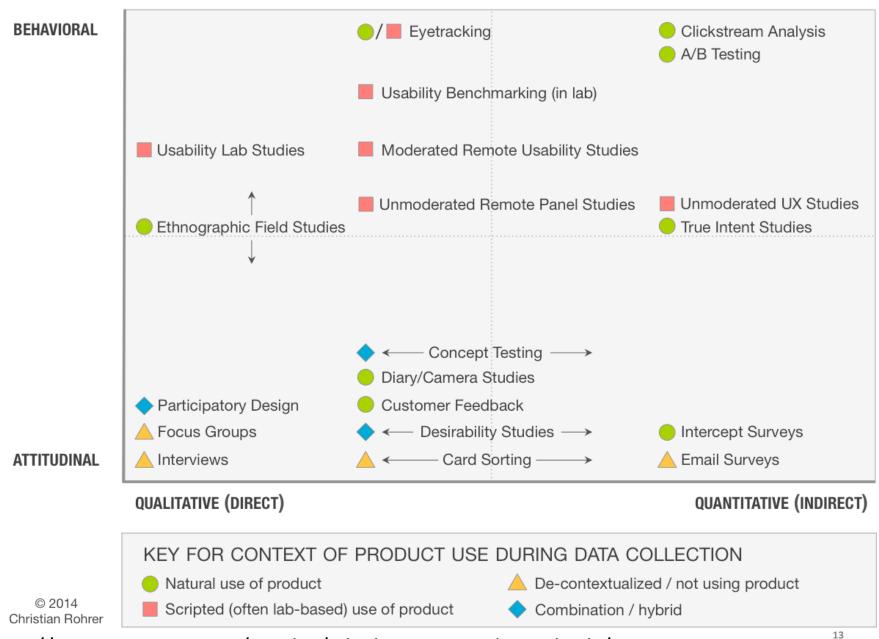
What kind of data do you want?

Attitudinal – User attitudes and opinions


VS.

- Behavioral What the user actually does or is capable of doing
- Qualitative Unstructured data. Typically unstructured language data

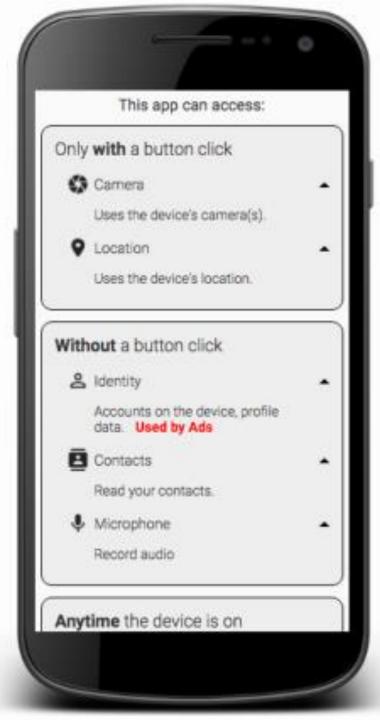
VS.


 Quantitative – Structured data. Typically numerical data that can be summed or counted

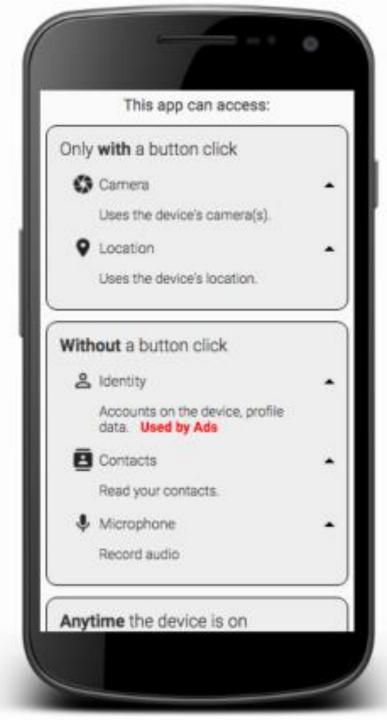
QUESTIONS ANSWERED BY RESEARCH METHODS ACROSS THE LANDSCAPE

https://www.nngroup.com/articles/which-ux-research-methods/

A LANDSCAPE OF USER RESEARCH METHODS



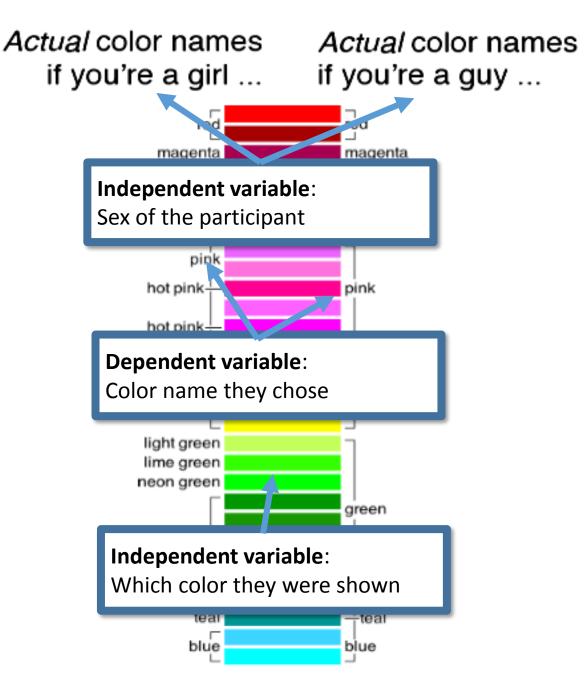
https://www.nngroup.com/articles/which-ux-research-methods/


What are you going to measure?

- In statistics there are classically two types of measurements (variables): dependent and independent
- Dependent
 - Also known as the outcome variable
 - Measures the usability goal
- Independent
 - Anything you are directly manipulating
 - An element of the study which is under your control
 - A pre-existing feature of your participant

Lets use this study as an example

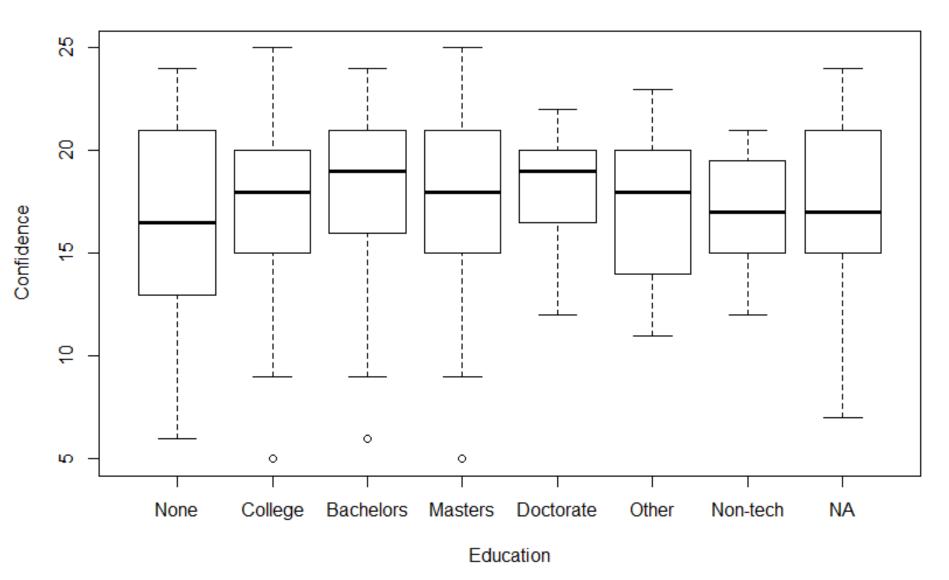
Goal: User can identify if an app can or cannot perform an action directly tied to a permission.


Aweson can access	ne App				vesome A	pp	
 Location Uses the device's location Camera Uses the device's camera(s) 		4	hout a button clic Microphone Record audio Camera Uses the device's c			•	
Dependent variable: Count of the number of questions the participant answered correctly Absolutely							
Charge purchases to your credit card at any time.	Independe Which of th participant	ne two in	terfaces	the	Possible		
Get your location. Allow ads to know	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
your location. Load ads.		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
Write on the SD card		\bigcirc	\bigcirc	\bigcirc	\bigcirc	17	

Variables that would make sense

- Goal: User can identify if an app can or cannot perform an action directly tied to a permission.
- Dependent
 - Number of permissions correctly/incorrectly read
 - Time spent reading each permission screen
- Independent
 - Study group
 - Order of the tasks
 - Time of day
 - Type of device (laptop, mobile, PC)
 - Demographics of the participants

XKCD ran a study to see what men and women call different colors


- Dependent
 - The color name they typed in
- Independent
 - Sex (man or woman)
 - Color they were shown (RGB)

https://blog.xkcd.com/2010/05/03/color-survey-results/

MSc Project on reading config files

- Goal: Does the order of lines in a configuration file impact the way people interpret the file?
- Dependent
 - True/False did the participant consider order
 - 1-7 How confident were they in their answer
- Independent
 - Education level for technical professions only
 - Self-efficacy statements around programming and configuration file modification
 - Prior experience with configuration files
 - Other demographics

Attitudinal example

Live trains					
😂 Your journey. Your way.					
			2		
Departing Arriving					
From	Edinburgh		C tı		
To Glasgow Queen Street 🙁					
Update results					
▲ Set disruption alert					
Earlier Last updated: 20:38					
21:00	Glasgow Queen Falkirk High ^{On time}	Street via	Plat. 14		
21:30 Glasgow Queen Street via Falkirk High On time					
My trave	el Live trains	Planner	More		

1. I think that I would like to use this system frequently.

Strongly Agree ----- Strongly Disagree

- 1. I found the system unnecessarily complex.
- 2. I thought the system was easy to use.
- I think that I would need the support of a technical person to be able to use this system.
- 4. I found the various functions in this system were well integrated.
- 5. I thought there was too much inconsistency in this system.
- 6. I would imagine that most people would learn to use this system very quickly.
- 7. I found the system very cumbersome to use.
- 8. I felt very confident using the system.
- 9. I needed to learn a lot of things before I could get going with this system.

https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

System Usability Scale

- Have the participants interact with the system
- Have them answer the questions on the right
- Follow the scale instructions
- Use the resulting number as a dependent variable

1. I think that I would like to use this system frequently.

Strongly Agree ----- Strongly Disagree

- 1. I found the system unnecessarily complex.
- 2. I thought the system was easy to use.
- I think that I would need the support of a technical person to be able to use this system.
- 4. I found the various functions in this system were well integrated.
- 5. I thought there was too much inconsistency in this system.
- 6. I would imagine that most people would learn to use this system very quickly.
- 7. I found the system very cumbersome to use.
- 8. I felt very confident using the system.
- 9. I needed to learn a lot of things before I could get going with this system.

What I really want you to learn:

Think about what variables you are interested in and what graph / plot / table you want **before** you conduct the study

Common dependent things to measure

- Time to complete task
- Percent of task completed
- Percent of task completed per unit of time
- Ratio of successes to failures
- Time spent in errors
- Percent or number of errors
- Percent or number of competitors better than it
- Number of commands used
- Frequency of help and documentation use
- Percent of favorable/unfavorable user commands

Common dependent things to measure

• Number of:

- Repetitions of failed commands
- Runs of successes and failures
- Times interface misleads the user
- Good and bad features recalled by users
- Available commands not invoked
- Regressive behaviors
- Users preferring your system
- Times users need to work around a problem
- Times the user is disrupted from a work task
- Times the user loses control of the system
- Times user expresses frustration or satisfaction

Think-pair-share

- Which partial passcode entry is more usable?
- How might you define "usable"
- What are the dependent variables?
- What are the independent variables?

EASE
Additional authentication is required.
EASE second challenge: Please provide the three letters requested from your memorable word:
Letter: 1
Letter: 3
Letter: 7
show/hide hint
Login now

Please provide the three letters requested from your memorable word.

Step 3: Setup your study

What do you want to be able to say after the evaluation is done?

- X interface is better than Y interface
 - Run an A/B study
 - Randomly assign users to groups
 - Have all users complete the same tasks
- My new interface is better than my old interface
 - Same as above
 - Or use rapid usability approach
- Users can use interface X to accomplish Y
 - Have users accomplish a set of tasks using X
 - Measure the usability (see step 2)
- Using my interface makes people better/smarter
 - Pre/post test give them the same test before and after using your system

Between vs. Within subjects

- Between subjects
 - Your study only shows one interface to one person
 - You are measuring how well the people randomly assigned to the A interface did compared to the people randomly assigned to the B interface
 - Lots of variability with this method
- Within subjects
 - Your study shows all interfaces to all people
 - You are measuring the difference in how they do on the two interfaces
 - Less variability (same person) but more learning effects and priming

Scripted vs observational

- Scripted studies are planned in advance
 - Tasks are prepared in advance
 - Participants are in a controlled environment such as a lab
 - Nearly all lab based studies are scripted
 - Think-aloud is scripted
- Observational studies are not planned and simply observe users doing their own tasks
 - Participants may not even be notified that they are part of a study
 - Participants are in their natural environment doing what they would normally do
 - Hard/impossible to prove what task the user was trying to accomplish

Study design

- A/B test between the existing and new interface
- Between subjects
- 10 Tasks shown in the same order to all participants
- Dependent variables
 - Accuracy on task
- Independent variables
 - Which interface

	This app can access:	
Only	with a button click	
0	Camera	
	Uses the device's camera(s).	
	Location	
	Uses the device's location.	
With	out a button click	
8	Identity	3
	Accounts on the device, profile data. Used by Ads	
8	Contacts	
	Read your contacts.	
Ŷ	Microphone	
	Record audio	
_		

Study design

- Between subjects
- Multiple tasks
- Dependent
 - The color name they typed in
- Independent
 - Sex (man or woman)
 - Color they were shown

Actual color names if you're a girl ...

Actual color names if you're a guy ...

https://blog.xkcd.com/2010/05/03/color-survey-results/

Step 4: Evaluate the outcome

Evaluation options

- Basic
 - Counts of effectiveness on tasks
- Academically sound
 - Statistics

Basic version

- Count the number of tasks where the participant was able to accomplish your goal
- If most participants were able to accomplish the goal then Yay! The interface is usable.

	Current Interface	
Task 1	15	12
Task 2	12	14
Task 3	11	10
Task 4	7	4

We are about to learn about some of the basic statistics used in HCI

These are only needed if you want to scientifically prove that a statement is true

Types of data

- Numeric
 - Continuous Any value on the range is possible including decimal
 - **Discrete** Only certain values on the range are possible
 - Interval Only certain values on the rage are possible and each has equal distance from its neighboring values

Categorical

- **Binary** Only two possibilities
- Ordinal The values have an ordering (slow, medium, fast)
- Nominal The values have no ordering (apple, pear, kiwi, bannana)

<u>Study design</u>

- Accuracy on task
 - Categorical ordinal
- Which interface
 - Categorical binary

Only	with a button click	
0	Camera	
	Uses the device's camera(s).	
	Location	
	Uses the device's location.	
With	out a button click	
8	Identity	
	Accounts on the device, profile data. Used by Ads	
8	Contacts	
	Read your contacts.	
÷	Microphone	
	Record audio	

	Absolutely Impossible	Impossible	Neutral	Possible	Absolutely Possible
Charge purchases					
to your credit card	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
at any time.					
Get your location.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Allow ads to know					
your location.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Load ads.	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Write on the SD card					

Study design

Dependent

- The color name they typed in
- Categorical nominal

Independent

- Sex (man or woman)
- Color they were shown
- Categorical ordinal
- Could be argued that it is integral based on RGB

Actual color names if you're a girl ...

Actual color names if you're a guy ...

https://blog.xkcd.com/2010/05/03/color-survey-results/

The next slide will not appear on any tests, it is here for your future reference

Comparing	Dependent	Independent	Parametric (Dependent variable is mostly normally distributed)	Non-parametric
The means of two independent groups	Continuous / scale	Categorical / nominal	Independent t-test	Mann-Whitney test
The means of 2 paired (matched) samples	Continuous / scale	Time variable (before/after)	Paired t-test	Wilcoxon signed rank test
The means of 3+ independent groups	Continuous / scale	Categorical / nominal	One-way ANOVA	Kruskal-Wallis test
3+ measurements on the same subject	Continuous / scale	Time variable	Repeated measures ANOVA	Friedman test
Relationship between 2 continuous variables	Continuous / scale	Continuous / scale	Pearson's Correlation Coefficient	Spearman's Correlation Co- efficient
Predicting the falue of one variable from the value of a predictor variable	Continuous / scale	Any	Simple Linear Regression	
Assessing the relationship between two categorical variables	Categorical / nominal	Categorical / nominal		Chi-squared test

Chi Squared

- $\chi^2 = \sum \frac{(Observed \, Value Expected \, Value)^2}{(Expected \, Value)}$
- Answers the question:
 - Does the observed data have the same ratio as expected OR
 - Do two counts come from the same distribution

Questions?