
Spark verification features

Paul Jackson

School of Informatics
University of Edinburgh

Formal Verification
Spring 2018



Adding specification information to programs

I Verification concerns checking whether some model (or
program) has desired properties

I An assertion is a logical formula that is associated with a
point in the control-flow of a program.
It describes a property of the program state that is desired
true at that point.

I Assertions usually expressed in the language of Boolean
expressions provided by the programming language, sometimes
extended with ∀ and ∃ quantifiers.

I FV approaches try to logically establish that assertions hold
for all possible execution paths leading to them.

2 / 22



Assertion pragmas

if X > Y then

Max := X;

else

Max := Y;

end if;

pragma Assert (Max >= X and Max >= Y

and (Max = X or Max = Y)

);

3 / 22



Freedom from runtime exceptions
Common causes of runtime exceptions include

I arithmetic overflow

I divide by zero

I array index out of bounds
I subrange/subtype constraint violation

subtype T1 is Integer range 1 .. 10;

V : T1 := 10; -- OK

begin

V := 1 + V - 1; -- OK

V := 1 + V; -- EXCEPTION THROWN

Assertions automatically inserted to check these never occur

Formal analysis simplified by not having to consider exception
scenarios

4 / 22



Runtime errors example

Consider

A (I + J) := P / Q;

What runtime errors might occur?

Answer:

I I+J might overflow the base-type of the index ranges subtype

I I+J might be outside the index ranges subtype

I P/Q might overflow the base-type of the element type

I P/Q might be outside the element subtype

I Q might be zero

5 / 22



Preconditions

A precondition is an assertion attached to the start of a
subprogram (a function or a procedure).

procedure Increment (X: in out Integer)

with Pre => (X < Integer’Last)

is

begin

X := X + 1;

end Increment;

I FV assumes subprogram preconditions hold when checking
assertions within the subprogram

I FV checks preconditions hold at each subprogram invocation

6 / 22



Postconditions
A postcondition is an assertion attached to control-flow points of a
subprogram where control flow exits the subprogram

function Total_Above_Threshold (Threshold : in Integer)

return Boolean

with

Post => Total_Above_Threshold’Result = Total > Threshold;

procedure Add_To_Total (Incr : in Integer) with

Post => Total = Total’Old + Incr;

I When analysing a subprogram, FV checks all postconditions
hold

I At each control flow point for the return of a call to a
subprogram, FV assumes any subprogram postconditions hold

7 / 22



Combining preconditions and postconditions

procedure Increment (X: in out Integer)

with Pre => (X < Integer’Last)

Post => X = X’Old + 1;

procedure Sqrt (Input : in Integer; Res: out Integer)

with

Pre => Input >= 0,

Post => (Res * Res) <= Input and

(Res + 1) * (Res + 1) > Input;

8 / 22



Design by contract

Preconditions and postconditions

I form a contract between subprogram users and the
subprogram implementers.

I if rich enough, provide full documentation to users – insulate
them from implementation details

I promote modular design

I Extend the abstract data type (ADT) paradigm that inspired
OO programming and the separation of package specifications
and bodies in Ada.

I promote modular verification.

Hence enable scaling of FV.

9 / 22



Contract use example

procedure Add2 (X : in out Integer)

with Pre => (X <= Integer’Last - 2)

is

begin

Increment (X);

Increment (X);

end Add2;

Will pre-conditions of both Increment calls be verified?

Answer: yes if Increment contract is specified with a
post-condition.

10 / 22



Spark flow analysis

Considers two issues:

I Interaction between subprograms and global state – what
global state is read from and written to.

I Dependence of outputs of subprograms on inputs
I Inputs and outputs include both parameters and global

variables

Spark notation allows desired flows to be specified

Tools then check flow specifications met

I Specification properties might related to code security

I Checks identify uninitialised variables, unused variables,
ineffective code.

Assertion checking by tools relies on flow analysis to check that all
variables initialised.

11 / 22



Global flow contract examples

procedure Set_X_To_Y_Plus_Z with

Global => (Input => (Y, Z), -- reads values of Y and Z

Output => X); -- modifies value of X

procedure Set_X_To_X_Plus_Y with

Global => (Input => Y, -- reads value of Y

In_Out => X); -- modifies value of X

-- also reads its initial value

Sometimes known as data flow or just data dependencies in
Spark documentation.

12 / 22



Intra-subprogram flow contract examples

procedure Swap (X, Y : in out T) with

Depends => (X => Y, -- X depends on initial value of Y

Y => X); -- Y depends on initial value of X

procedure Set_X_To_Y_Plus_Z with

Depends => (X => (Y, Z)); -- X depends on Y and Z

Sometimes known as information flow or just flow dependencies in
Spark documentation.

13 / 22



Statically checking an assertion

Involves considering all execution paths leading to it.

Branches and joins in execution paths due to conditionals are no
problem.

if X > Y then

Max := X;

else

Max := Y;

end if;

pragma Assert (Max >= X and Max >= Y);

Loops are an issue

14 / 22



Execution paths involving loops
Full set of execution paths through a loop

I might not be fixed size – could be data dependent

I could be very large

subtype Natural is Integer range 0 .. Integer’Last;

procedure Increment_Loop (X : in out Integer;

N : in Natural) with

Pre => X <= Integer’Last - N,

Post => X = X’Old + N

is

begin

for I in 1 .. N loop

X := X + 1;

end loop;

end Increment_Loop;

15 / 22



Breaking loops with assertions
A Loop invariant is an assertion inserted into a loop to split
execution paths into well-defined segments.

procedure Inc_Loop_Inv (X : in out Integer; N : Natural) with

Pre => X <= Integer’Last - N,

Post => X = X’Old + N

is

begin

for I in 1 .. N loop

X := X + 1;

pragma Loop_Invariant (X = X’Loop_Entry + I);

end loop;

end Inc_Loop_Inv;

Segments are:

I Pre −→ Loop_Invariant
I Loop_Invariant−→ Loop_Invariant
I Loop_Invariant−→ Post
I Pre −→ Post for when N = 0

16 / 22



Euclidean linear division

procedure Linear_Div (I : in Integer; J : in Integer;

Q : out Integer; R : out Integer;)

with

Pre => I >= 0 and J > 0

Post => Q >= 0 and R >= 0 and R < J and J * Q + R = I

is

begin

Q := 0;

R := I;

while R >= J loop

pragma Loop_Invariant

(R >= 0 and Q >= 0 and J * Q + R = I);

Q := Q + 1;

R := R - J;

end loop;

end Linear_Div;

17 / 22



Looping through an array

subtype Index_T is Positive range 1 .. 1000;

subtype Component_T is Natural;

type Arr_T is array (Index_T) of Component_T;

procedure Validate_Arr_Zero (A : Arr_T; Success : out Boolean)

with

Post => Success = (for all J in A’Range => A(J) = 0)

is

begin

for J in A’Range loop

if A(J) /= 0 then

Success := False;

return;

end if;

pragma Loop_Invariant ???;

end loop;

Success := True;

end Validate_Arr_Zero;

18 / 22



Looping through an array, with a loop invariant

subtype Index_T is Positive range 1 .. 1000;

subtype Component_T is Natural;

type Arr_T is array (Index_T) of Component_T;

procedure Validate_Arr_Zero (A : Arr_T; Success : out Boolean)

with

Post => Success = (for all J in A’Range => A(J) = 0)

is

begin

for J in A’Range loop

if A(J) /= 0 then

Success := False;

return;

end if;

pragma Loop_Invariant

(for all K in A’First .. J => A(K) = 0);

end loop;

Success := True;

end Validate_Arr_Zero; 19 / 22



Discovery & inference of loop invariants

I Reasoning with loop invariants is very much like induction on
naturals

P(0) ∀n : N.P(n)⇒ P(n + 1)

∀n : N.P(n)

I Checking loop invariant holds on first iteration like base case
of induction

I Checking loop invariant holds on later iteration, given it holds
on immediately previous one like step case of induction

I Loop invariants often discovered by generalising
post-condition, just as proof by induction involves first
generalising the statement to be proven.

I Automatic discovery of loop invariants is an active research
field

I Some cases are easy
I Gnatprove tool does infer bounds on for-loop indexes.

20 / 22



Showing loops terminate
Let Σ be the set of possible program states,
〈W , <〉 be a well-founded order.

To show a loop terminates:

1. define a function v : Σ→W
2. show

v(s ′) < v(s)

whenever s is the state at some point in the loop and s ′ is the
state at the same point one iteration on.

Function v is called a variant function.

In Spark

I W is most typically some bounded arithmetic type, e.g.
Integer.

I < is conventional order or converse
I Also can have W containing tuples of arithmetic values,

lexicographically ordered
21 / 22



Loop termination example

subtype Index is Positive range 1 .. 1_000_000;

type Text is array (Index range <>) of Integer;

function LCP (A : Text; X, Y : Integer) return Natural with

Pre => X in A’Range and then Y in A’Range,

is

L : Natural;

begin

L := 0;

while X + L <= A’Last

and then Y + L <= A’Last

and then A (X + L) = A (Y + L)

loop

pragma Loop_Variant (Increases => L);

L := L + 1;

end loop;

return L;

end LCP;

22 / 22


