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Recap

» Previously:
» Model Checking, and an informal introduction to LTL

» This time: Linear Temporal Logic
» Syntax
» Semantics
» Equivalences



LTL - Syntax
LTL = Linear(-time) Temporal Logic
Assume some set Atom of atomic propositions

Syntax of LTL formulas ¢:

pu=pl-¢|dVP[dANG[¢—= ¢ |X[Fp |G| U

where p € Atom.

Pronunciation:

> X¢p —neXt ¢

» F¢ — Future ¢

> G¢ — Globally ¢

> ¢Uy — ¢ Until ¢
Other common connectives: W (weak until), R (release).
Precedence high-to-low: (X, F, G, —), (U), (A, V), —.

» E.g. Write Fp A Gq — pU rinstead of ((Fp) A (Gq)) — (pUr).



LTL - Informal Semantics

LTL formulas are evaluated at a position i along a path 7 through
the system (a path is a sequence of states connected by transitions)

» An atomic p holds if p is true the state at position i.

> The propositional connectives =, A, V, — have their usual
meanings.

> Meaning of LTL connectives:

» X¢ holds if ¢ holds at the next position;

F¢ holds if there exists a future position where ¢ holds;

G¢ holds if, for all future positions, ¢ holds;

¢U1) holds if there is a future position where v holds, and ¢

holds for all positions prior to that.

» ¢Ry holds if there is a future position where ¢ becomes true,
and 1 holds for all positions prior to and including that i.e. ¢
‘releases’ 1).

> It is equivalent to =(—¢dU—1).
» Thus R is the dual of U.
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This will be made more formal in the next few slides.



LTL - Formal Semantics: Transition Systems and Paths

Definition (Transition System)
A transition system (or model) M = (S, —, L) consists of:

S a finite set of states
— CSx%xS transition relation
L:S— P(Atom) alabelling function

such that Vs; € S. Jsp € S. 51 — 9

Note: Atom is a fixed set of atomic propositions, P(Atom) is the
powerset of Atom.

Thus, L(s) is just the set of atomic propositions that is true in state s.
Definition (Path)

A path 7 in a transition system M = (S, —, L) is an infinite
sequence of states s, s1, ... such that Vi > 0. s; — s;41.

Paths are written as: m = sy — s — S —> ...



LTL - Formal Semantics: Satisfaction by Path

Satisfaction: 7 |=' ¢ — “path at position i satisfies formula ¢”

TET
T L
TEp iff p e L(s;)

T~ T
Tk oAy iff TE ¢and
TEoVy iff rE gorm E Y
T E ¢ — iff 7 ' ¢ implies 7 ' 1)
TE'X¢ iff 7 7o
TE'Fo¢ iff 3> i 7
TE G iff Vi>inkE ¢
mE ¢ Uy iff Jj>im | ¢ppandVk e {ij—1}. m EF ¢y
7 E ¢1 R ¢ iff (Vj> i 7w ¢o)or
(3j > i F ¢y and Vk € {i..j}. m EF ¢o)



LTL - Formal Semantics: Alternative Satisfaction by Path

Alternatively, we can define 7 | ¢ using the notion of ith suffix
7l =8 — siy1 — ...ofapathm =59 — 51 — ...

For example, the alternative definition of satisfaction for G would be:
TEG¢ if  Vi>0.7E¢

instead of

TE°Ge iff Vi>0.7mF ¢

Satisfaction in terms of | for the other connectives is left as an
exercise.

» 7 E' ¢ is better for understanding, and needed for past-time
operators.

» 7 | ¢ is needed for the semantics of branching-time logics, like
CTL.



LTL Semantics: Satisfaction by a Model

For a model M, we write
M, s |= o}
if, for every execution path m € M starting at state s, we have

Tk



A Taste of LTL — Examples

1. 7 ' G invariant
invariant is true for all future positions
Vj> i | invariant
Vj > i. invariant € L(s)
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A Taste of LTL — Examples

1. 7 ' G invariant

invariant is true for all future positions

Vj> i | invariant

Vj > i. invariant € L(s)

2. ™ E' G —(read A write)
In all future positions, it is not the case that read and write
Vj > i. read € L(s;) V write € L(s;)

3. 7 E' G(request — Fgrant)

At every position in the future, a request implies that there
exists a future point where grant holds.

Vj > i. request € L(s;) implies 3k > j. grant € L(s).

4. 7 ' G(request — (request U grant))

At every position in the future, a request implies that there
exists a future point where grant holds, and request holds up
until that point.

Vj > i. request € L(s;) implies

Jk > j. grant € L(sg) and VI € {j, k — 1}. request € L(s).
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LTL Equivalences 1

p=1 = YMVTreMVirkE oo nE Y

Dualities from Propositional Logic:

~(PAY) =V ~(oVY)=—dp Ny
Dualities from LTL:

—X¢p =X -G¢p =F—¢ -Fp = G-¢

(¢ Uy)=-¢pR “(¢RY)=—9 U9

Distributive laws:

G(d A ) =GHAGY F(¢V ¢) = F$ V Fy
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LTL Equivalences 2

Inter-definitions:

Fp = -G—¢ G¢p = —F-¢ Fop=TU¢ Gp=1LRo

Idempotency:
FF¢ = Fo GGy = Go
Weak and strong until:
¢W=9¢UtVGo U =0 WPAFp

Some more surprising equivalences:

GFG¢ =FG¢  FGFp=GFp  G(F¢V Fy) = GF¢ V GFy



Summary

» Introduction to Model Checking (H&R 3.2)
» Semantics of LTL

» Next time:
» Introduction to NuSMV



