
Formal Programming Language Semantics note 9 CS4/MSc/TPG 20.10.05

Formal Programming Language Semantics note 9

Extended example: a fragment of Java

In this note we will present a complete static and dynamic semantics for a small
fragment of Java — this will show how the techniques of operational semantics
scale up to a slightly more ambitious example. It will also serve to illustrate a
few points not covered by the languages in earlier notes — in particular:

• The treatment of complex data structures (e.g. a heap of objects pointing at
one another) rather than just primitive data values like integers.

• The treatment of methods and method calls (similar ideas can be used to
describe functions and procedures in imperative or functional languages).

• The treatment of recursive declarations (in this case, recursive methods and
recursive classes).

Syntax of COOL. Our language (which we will call COOL1) will be a small frag-
ment of Java. We claim that every program of COOL is a legal program of Java,
and that for all such programs, the behaviour specified by our semantics agrees
with the behaviour specified by the definition of Java. However, we have im-
posed some quite strong (and silly) restrictions on programs in order to keep our
definition reasonably small. E.g.:

• We make do with a single basic type int.

• We omit many features that we have seen several times already, like condi-
tionals and while loops.

• Each method must take exactly one argument, and must return a value of
some type (no void return types).

• All field and method access expressions must have an explicit target object,
so e.g. one must write this.foo rather than just foo.

• No field initializers or explicit constructors: we just have the default zero-
argument constructor which sets up the fields with their default values.

• All fields are private, all methods are public.

• No inheritance or overriding.

1An acronym for cut-down object oriented language. Or maybe a recursive acronym for cool
object oriented language.

1

Formal Programming Language Semantics note 9 CS4/MSc/TPG 20.10.05

• No overloading of methods.

• No static fields or methods.

. . . plus lots of other more trivial restrictions that you may notice. Most of these
omitted features could be described easily enough using similar techniques (in-
deed, you might enjoy working out suitable semantic rules for some of these
features).

We do allow recursive methods and recursive class definitions in our language,
as there is some interest in seeing how these features are described.

As before, we assume we are given a set I of identifiers, which can be used
as names for fields, methods, parameters, or classes. For the purpose of the
context-free grammar, we will write name for the lexical category of identifiers.
We will sometimes add a subscript (e.g. name f ield) to indicate what role the name
is playing.

The syntax of our language is as follows:

type ::= int | nameclass

expr ::= n | expr - expr | this | nameparam | expr . name f ield |
expr . namemeth(expr) | new nameclass()

com ::= expr . name f ield = expr | com ; com
field-decl ::= private type name f ield ;

field-decls ::= ε | field-decls field-decl
method-decl ::= public type namemeth(type nameparam){com ; return expr}

method-decls ::= ε | method-decls method-decl
class-decl ::= class nameclass{field-decls method-decls}

class-decls ::= ε | class-decls class-decl
program ::= class-decls expr

Note that a complete program consists of a sequence of class declarations fol-
lowed by a “top-level” expression to be evaluated (which might be something like
a call to a main method). Without this top-level expression, there is no way to
force any of the code to be executed.

We write Expr and Com for the syntactic categories of expressions and com-
mands respectively.

Static semantics Let’s write U for the set of possible type names. It will also
be useful to have a set U+ containing the additional symbol none.

U = Iclass t {int}, U+ = U t {none}

For the purpose of the static semantics, a field environment will be a finite list of
pairs associating types to field names; this is meant to record information about

2

Formal Programming Language Semantics note 9 CS4/MSc/TPG 20.10.05

the fields occurring within a single class. Likewise, a method environment will as-
sociate parameter and result types to method names; it will also be convenient to
record the method body itself (the parameter name, a command, and an expres-
sion for the returned value). A class environment associates to each class name a
corresponding field and method environment.2 Finally, a parameter environment
records the name and type of a single method parameter; we also include the
dummy parameter environment none for use with top-level expressions (where
there is no method parameter around).

FE = (If ield × U)∗

ME = Imeth ⇀ (Uparam × Uresult × Iparam ×Com× Expr)
CE = Iclass ⇀ FE×ME
PE = (Iparam × U) t {none}

We use FE, ME, CE, PE as variables ranging over FE, ME, CE, PE respectively. We
write CEF and CEM for the partial functions I ⇀ FE, I ⇀ ME obtained from CE
using the two projection functions. We will also use f, m, c, p to range over the
names of fields, methods, classes and parameters respectively. As before we use
the notation FE(|f|) for looking up the information associated with a given name
in a given field environment. We will write dom FE for the set of names f such
that FE(|f |) is defined, and dom ME, dom CE for the genuine domains of the
partial functions ME, CE.

The “background” against which a particular expression or command should
be typechecked will therefore consist of: a class environment CE (giving details of
all the classes in scope and their fields and methods); a parameter environment
PE specifying the type of the method parameter if any; and an element θ ∈ U+

specifying the current class if any (that is, the type of the current object this).
For top-level expressions, both PE and θ will be none.

We thus expect to have typing assertions of the forms:

CE,PE, θ ` expr : u CE, PE, θ ` com : com

The typing rules for expressions are as follows.

CE,PE, θ ` n : int

CE,PE, θ ` expr1 : int CE,PE, θ ` expr2 : int

CE,PE, θ ` expr1 - expr2 : int

2We have chosen to take field environments to be lists of pairs, and method and class envi-
ronments to be genuine partial functions. This reflects the fact that, in Java, the order in which
field declarations appear within a class declaration can sometimes make a semantic difference,
(think about the effect of adding field initializers to COOL, for instance), whereas the order of
method declarations within a class declaration makes no difference, nor does the order of class
declarations within a source file.

3

Formal Programming Language Semantics note 9 CS4/MSc/TPG 20.10.05

CE,PE, θ ` this : θ
θ ∈ Iclass

CE,PE, θ ` p : u
PE = (p, u)

CE,PE, θ ` expr : utarget

CE,PE, θ ` expr.f : uf ield

utarget = θ,
CEF (utarget)(|f|) = uf ield

CE,PE, θ ` expr1 : utarget CE,PE, θ ` expr2 : uparam

CE,PE, θ ` expr1.m(expr2) : uresult

CEM(utarget)(m) =
(uparam, uresult,−,−,−)

CE,PE, θ ` new c() : c
c ∈ dom CE

The typing rules for commands are:

CE,PE, θ ` expr1 : utarget CE,PE, θ ` expr2 : uf ield

CE,PE, θ ` expr1 . f = expr2 : com
utarget = θ,
CEF (utarget)(|f|) = uf ield

CE,PE, θ ` com1 : com CE,PE, θ ` com2 : com

CE,PE, θ ` com1 ; com2 : com

We also require rules to say how the various kinds of environments arise. Be-
cause of the possibility of recursion, we will first give some rules showing how
sequences of declarations give rise to environments under the (seemingly circu-
lar) assumption that we already have environments in which to the declarations
are to be typechecked. More precisely, we will give rules for assertions of the
form

CE ` fds ⇒ FE CE, θ ` mds ⇒ ME CE ` cds ⇒ CE ′

which we may read as saying “relative to CE, the sequence of field declarations
fds gives rise to the field environment FE”, etc. (For typographical convenience
we write fds in place of field-decls, etc.)

The rules for field declarations are fairly trivial:

CE ` ε ⇒ []

CE ` fds ⇒ FE

CE ` fds private u f ; ⇒ FE; (f, u)
f 6∈ dom FE

The rules for method declarations are more complex:

CE, θ ` ε ⇒ ∅

4

Formal Programming Language Semantics note 9 CS4/MSc/TPG 20.10.05

CE, θ ` mds ⇒ ME CE, PE, θ ` com : com CE,PE, θ ` expr : uresult

CE, θ ` mds public uresult m (uparam p) {com ; return expr}
⇒ ME; [m 7→ (uparam, uresult, p, com, expr)]

PE = (p, uparam),
m 6∈ dom ME

The rules for class declarations are:

CE ` ε ⇒ ∅

CE ` cds ⇒ CE ′ CE ` fds ⇒ FE CE, c ` mds ⇒ ME

CE ` cds class c {fds mds} ⇒ CE ′[c 7→ (FE, ME)]
c 6∈ dom CE ′

Finally, we introduce an assertion form program CE, u, saying that a pro-
gram is well-typed and gives rise to the class environment CE, and its top-level
expression has type u relative to this class environment. This assertion form is
subtly different from those above, in that it does not have the same apparently
circular character — no class environment is necessary on the left hand side.
The following elegant rule takes care of all forms of recursive declaration in a
single swoop; the trick is the double occurrence of CE in the first premise. (It
may require a bit of thought to satisfy yourself that this has the desired effect.)

CE ` cds ⇒ CE CE, none, none ` expr : u

cds expr CE, u

It is easy to check that for any cds and expr, there is at most one pair (CE, u)
such that cds expr CE, u.

Dynamic semantics In order to give a dynamic operational semantics for COOL,
we need a mathematical model for data in this language. Let L be some infinite
set of abstract locations, which we may loosely think of as playing the role of
potential memory addresses at which an object may be stored. We let ` range
over L. We also let L+ = L t {none}.

An expression of object type will in general evaluate to a reference to some
object (i.e. an element of L), or perhaps the special value null (which is not in
L and which plays a different role from none). an expression of integer type will
of course evaluate to an integer. We therefore define a set V of potential values
(ranged over by v):

V = Z t L t {null}

The actual contents of an object may be modelled by a record associating
values to finitely many field names. We write R for the set of records, and let r
range over R. A heap may then be modelled as a partial function associating a
record to certain locations; this corresponds to giving details of the object stored
at a certain address in memory. It is convenient also to include information

5

Formal Programming Language Semantics note 9 CS4/MSc/TPG 20.10.05

giving the class of each object, so that objects “know what their class is” at
runtime. We write H for the set of heaps, and let h range over H.

R = (If ield × V)∗, H = L ⇀ (Iclass × R)

For the purpose of recording the values of method parameters at runtime, we
also need a set P of (dynamic) parameter environments, ranged over by ℘:

P = (Iparam × V) t {none}

The “background” against which an expression is evaluated or a command exe-
cuted consists of: a heap h ∈ H corresponding to the initial state of memory; a
parameter environment ℘ ∈ P giving the value of the current parameter (if any),
and a location ` ∈ L+ giving the location of the current object this (if any). (De-
tails of the contents of the current object can then be found by looking up h(`).)
Both expressions and commands may have an effect on the heap, and the eval-
uation of expressions will additionally result in a value. We therefore expect our
evaluation statements to have the form

h, ℘, ` ` expr ⇓ v, h′ h, ℘, ` ` com ⇓ h′

We also need some information carried over from the static semantics. Suppose
we wish to define the runtime behaviour of a complete program called program.
We write CE for the class environment arising from the static semantics, i.e. such
that program CE, u for some u. Since CE will remain constant throughout the
execution of a program, we will not bother to mention it in all our rules, but
strictly speaking we should regard the symbol ` as an abbreviation for `CE.

Finally, some machinery to help us construct records corresponding to newly
created objects (rather lazily taking advantage of the fact that constructors in
COOL can’t do anything interesting). To each type u ∈ U we may associate a
value default(u) as follows:

default(int) = 0, default(c) = null

To any field environment FE = [(f1, u1), . . . , (fk, uk)] we may then associate the
default record

Default (FE) = [(f1, default(u1)), . . . , (fk, default(uk))]

The rules for evaluating expressions are now as follows:

h, ℘, ` ` n ⇓ n, h

h0, ℘, ` ` expr1 ⇓ n1, h1 h1, ℘, ` ` expr2 ⇓ n2, h2

h0, ℘, ` ` expr1 - expr2 ⇓ n, h2

n = n1 − n2

h, ℘, ` ` this ⇓ `, h
` ∈ L

6

Formal Programming Language Semantics note 9 CS4/MSc/TPG 20.10.05

h, ℘, ` ` p ⇓ v, h
℘ = (p, v)

h0, ℘, ` ` expr ⇓ `′, h1

h0, ℘, ` ` expr . f ⇓ v, h1

h1(`
′) = (−, r),

r(f) = v

h0, ℘, ` ` expr1 ⇓ `′, h1 h1, ℘, ` ` expr2 ⇓ v, h2

h2, ℘
′, `′ ` com ⇓ h3 h3, ℘

′, `′ ` expr3 ⇓ v′, h4

h0, ℘, ` ` expr1 . m(expr2) ⇓ v′, h4

h1(`
′) = (c,−)

CEM(c)(m) =
(−,−, p, com, expr3)

℘′ = (p, v)

h0, ℘, ` ` new c() ⇓ `′, h1

`′ 6∈ dom h0, h1 = h0[`
′ 7→ r]

r = Default (CEF (c))

The rules for commands are:

h0, ℘, ` ` expr1 ⇓ `′, h1 h1, ℘, ` ` expr2 ⇓ v, h2

h0, ℘, ` ` expr1.f = expr2 ⇓ h3

h2(`
′) = (c, r)

r′ = r[f 7→ v]
h3 = h2[`

′ 7→ (c, r′)]

h0, ℘, ` ` com1 ⇓ h1 h1, ℘, ` ` com2 ⇓ h2

h0, ℘, ` ` com1 ; com2 ⇓ h2

The final rule allows us to derive evaluation statements program ⇓ v giving the
result of evaluating (the top-level expression of) a complete program. Note that
this rule mixes static and dynamic assertions, and we have made explicit the
dependency of the dynamic assertions on CE:

cds expr (CE, u) ∅, none, none `CE expr ⇓ v

cds expr ⇓ v

This completes the formal definition of COOL. One can now, for instance, give a
precise statement of (a modest version of) type safety for this language as follows:

Theorem. If program (CE,int) and program ⇓ v, then v ∈ Z.

Miscellaneous remarks

1. Our language allows expressions that attempt to dereference a null pointer.
Our semantics reflects the fact that such expressions do not evaluate suc-
cessfully by simply failing to generate evaluation statements for them; thus,
we have not distinguished between this kind of failure and failure due to
non-termination, for instance. It would be a straightforward exercise to
incorporate NullPointerExceptions into the language using ideas from
Note 5.

7

Formal Programming Language Semantics note 9 CS4/MSc/TPG 20.10.05

2. You will notice that the static semantics of COOL is more complicated than
the dynamic semantics. This is actually fairly typical for formal descriptions
of modern typed languages.

3. Both our static and dynamic semantics are (I think) just about within reach
of what could be “animated” using present-day tools. That is, one could pro-
vide an animation tool with a more-or-less direct representation of the se-
mantic rules,3 supply a program to be typechecked or executed, and watch
it fly! Indeed, the same tool could typically be used for both static and
dynamic semantics, since such tools are usually just engines for general
“proof search” that work with a given bunch of rules.

Although such tools (currently) yield only an inefficient execution of a pro-
gram, they could still be useful for various purposes, e.g. allowing a lan-
guage designer to experiment with the effects of various semantic choices;
helping to debug a formal semantics for an existing language; or allowing a
compiler writer to test the conformance of his compiler to a formal seman-
tics which is regarded as standard.

Unfortunately, most existing animators of this kind are cumbersome and
hard to use. I am still hoping to get round to building a “lightweight” tool
that is easy to play with and can cope with languages such as COOL.

4. This concludes the operational semantics part of the course. The tech-
niques we have covered are in practice sufficient to allow us to describe
almost all features that arise in sequential programming languages, and
furthermore they are workable for full-scale languages (although some of
the rules do sometimes get a bit scary).

Curiously, one feature which is surprisingly hard to describe using these
techniques is unrestricted jumps (i.e. goto). This is largely because goto
doesn’t “respect” the syntactic structure of programs but allows you to jump
to a random point in the middle of a program phrase. The difficulty in de-
scribing this feature formally is of course related to a difficulty in reasoning
about it, and one can see this as correlated to the reason why goto is
frowned upon these days by most sophisticated people. In general, if a lan-
guage feature is hard to describe formally, this can be seen as some sort of
evidence that it is perhaps inherently complicated, and so should perhaps
be avoided if we want to know that our programs possess good properties.

The topic of concurrency (e.g. threads in Java) is another ball-game alto-
gether, and various process calculi such as CCS (Calculus of Communi-
cating Systems) have been developed to provide mathematical models for
it. Another way of modelling concurrency within the framework we have
presented is illustrated in Question 1 from the 2004 FPLS exam.4

John Longley

3A little additional code may be needed to help out with side conditions in some cases.
4This turned out to be rather too hard as an exam question, but may provide an entertaining

exercise to work through at your leisure.

8

