
Formal Programming Language Semantics note 7 CS4/MSc/TPG 28.10.02

Formal Programming Language Semantics note 7

Static semantics: scoping and typing rules

So far, we have concentrated on describing the dynamic (i.e. run-time) semantics
of programming languages. We will now examine how one might formally express
static aspects of a language (things that would typically be checked at compile-
time), such as scoping and typing constraints.

A block-structured language. We will consider a simple example of a language
in which programs are structured in (possibly nested) blocks which statically
determine the scoping of variables. Virtually all imperative languages from Algol
(1960) onwards are of this kind. In fact, we will introduce a language IMPb which
extends IMP with several new features:

1. A “block” construct (written let var X = a in · · · end) for declaring local
variables with delimited scope.

2. Program variables of boolean as well as integer type — this will allow us to
illustrate the idea of typing rules.

3. A distinction between variables (which can be updated) and constants (which
can’t). This just illustrates another kind of static constraint.

We will need a bit more notation. Let U be the set {int , bool , com}, which we
will think of as a set of types. (We would like to have used T, but that’s already
something else.) We also write UE for the set {int , bool } of expression types. We
use u and its decorated variants to range over U and UE. We also let D be the
set {var , const }, which we will call the set of status descriptors; we use d and its
decorated variants to range over D.

To give the syntax of IMPb, it will make life a bit easier to combine the phrase
categories Aexp and Bexp into a single category Exp of general expressions,
ranged over by e. (Don’t worry - we will be able to recover this distinction once
we have given the typing rules.) The full syntax of IMPb may now be given by the
following grammar:

Exp : e ::= X | n | e0 - e1 | e0 * e1 |
t | e0 <= e1 | not e | e0 and e1

Com : c ::= skip | X := e | c0 ; c1 | if e then c0 else c1 | while e do c |
let d X = e in c end

We will also write Phrase for the set of all phrases generated by this grammar:
Phrase = Aexp t Exp.

1

Formal Programming Language Semantics note 7 CS4/MSc/TPG 28.10.02

Static semantics. Not all phrases generated by the above grammar are (or
should be) legal program fragments in IMPb. In order to specify which are and
which aren’t, we will introduce a set of static typing rules, somewhat analogous
to the dynamic semantic rules considered earlier. The key idea is this: whether
a program phrase is legal will typically depend on the “environment” in which it
is used — that is, on which variables are in existence, and what their type and
status is, at the point in the program where the phrase occurs. We can capture
all this by means of a typing relation of the form

Γ ` P : u

where P is a program phrase, u is a type (one of int , bool , com), and Γ is a static
environment which records information about the variables that exist and their
type and status. The informal reading of this relation is “in the environment Γ,
P is a well-formed program phrase of type u.”

What exactly is a static environment? In this case, it will be a finite list of
identifiers together with associated types and status descriptors. An example of
a static environment would be the list [(X, int , const), (Y, bool , var)]. In general,
a static environment will be an element of the set

SE = List(I × UE × D).

We use Γ to range over static environments. (Note that static environments are
very similar to what are often called contexts in logic and type theory, but we
have already used this word to mean something else: see Note 6.) The typing
relation will therefore be a certain subset of SE × Phrase × U.

Like the evaluation relation, the typing relation will be defined inductively by
means of a set of syntax-directed derivation rules. (The way in which a set of rules
gives rise to a relation will be exactly as explained in detail in Note 4.) In fact,
the typing rules will be even more strictly syntax-directed than the evaluation
rules — each rule will specify the type of some phrase in terms of strictly smaller
phrases, so we won’t have the equivalent of “non-terminating computations” —
the practical upshot of this is that the typing relation is decidable via a simple
algorithm.

A bit more notation involving static environments is needed before we give the
rules. For environment update, we write Γ[X 7→ (u, d)] (where u ∈ UE) to mean
Γ; (X, u, d) — that is, the list obtained by adding the element (X, u,) to the end
of Γ. For looking up a particular identifier in an environment, we define Γ(|X |)
recursively as follows:

[](|Y |) = ? (‘undefined’), (Γ; (X, u, d))(|Y |) =

{
(u, d) if Y = X,
Γ(|Y |) otherwise.

Note that if Γ contains more than one entry for a certain identifier X, this defini-
tion of Γ(|X|) will give us the pair (u, d) associated with the last such entry.

[Exercise: In what ways do these definitions differ from the definitions of state
update and lookup? Can you see the reason for these differences, and for the
above choice of definition of Γ(|X|)?]

2

Formal Programming Language Semantics note 7 CS4/MSc/TPG 28.10.02

Typing rules for IMPb. We may now give the rules for the typing relation. There
is exactly one rule for each syntactic construct. First let us give the rules that
make use of static environments in an interesting way. The rule for variable
expressions says that the type of such expressions is that determined by the
current static environment:

Γ ` X : u
Γ(|X|) = (u, d)

The rule for assignments says that an assignment is a legal phrase of type com,
but only if the types match up correctly and the identifier has variable status:

Γ ` e : u

Γ ` X := e : com
Γ(|X|) = (u, var)

Next, the crucial rule for blocks, which captures the idea that within the body of
a block we are allowed to use the newly declared variable with the appropriate
type and status, but nowhere outside the block can we refer to this variable. Note
that the initialization expression e has to make sense in the “outer environment”
Γ in which the block occurs.

Γ ` e : u Γ′ ` c : com

Γ ` let d X = e in c end : com
Γ′ = Γ; (X, u, d)

(There is quite a lot packed into this rule, so it is worth studying it carefully!)

The remaining rules give the types of other expression forms, but do not make
use of the static environment in any interesting way. For readability, we give
them here in a reduced form, writing just P : u everywhere in place of Γ ` P : u
(you can call this the static environment convention if you like!).

n : int

e0 : int e1 : int

e0 - e1 : int

e0 : int e1 : int

e0 * e1 : int

t : bool

e0 : int e1 : int

e0 <= e1 : bool

e : bool

not e : bool

e0 : bool e1 : bool

e0 and e1 : bool

skip : com

c0 : com c1 : com

c0 ; c1 : com

e : bool c0 : com c1 : com

if e then c0 else c1 : com

e : bool c : com

while e do c : com

Finer points. A few further comments and observations on the above:

1. All this is closely analogous to what we did in dynamic semantics. In fact,
one can think of a state as a kind of environment relative to which a pro-
gram may be run. Indeed, in much of the literature, what we have called

3

Formal Programming Language Semantics note 7 CS4/MSc/TPG 28.10.02

states are referred to as dynamic environments; a letter like E is used in
place of σ; and the evaluation relation is written as E ` P ⇓ R rather than
〈P, σ〉 ⇓ R. However, it is important to recognize that quite different kinds
of information are recorded by static and dynamic environments: typically,
the former will record statically determined information such as the type of
a variable at a certain place in the program text, while the latter will record
its value at a certain point in time during the execution.

2. The language IMPb illustrates the difference between the concepts of scope
and visibility. Consider the program

let var X = true in
let var X = 3 in X := X+1 end

end

The two declarations here really declare two different variables called X (with
different types). The scope of the outer declaration of X — the region in
which the boolean variable “exists” — consists of the whole of the outer
block, though it is not visible throughout the whole of this region since it
is shadowed by the inner declaration. Our semantics makes precise the
idea that within nested blocks like this, a variable expression refers to the
innermost enclosing declaration for the corresponding identifier.

[Exercise: In many languages we are allowed declarations in the middle of a
block — their scope extends from the point of declaration to the end of the
block. Show how one can give a static semantics for such a language.]

3. Whilst it may appear that our typing rules are partly just making up what
we lost by amalgamating arithmetical and boolean expressions in the gram-
mar of the language, it is fairly clear that no (finite) context-free grammar
by itself would suffice by itself to capture exactly the well-formed phrases
of IMPb. So static semantics is really giving us something new here.

Actually, the typing rules by themselves completely determine the set of
well-formed phrases, so we could throw away the context-free grammar if
we wanted! But there again, it’s quite nice to construct a set of “potential
terms” first and then say which ones are actually legal.

4. Notice that IMPb has implicit typing — we don’t have to annotate declara-
tions with things like :int , but even so, the static semantics specifies how
types are assigned to variables. An implementation of IMPb would therefore
have to do some simple type inference at compile time, in order to check
that a program was well-typed.

John Longley

4

