
Formal Programming Language Semantics note 6 CS4/MSc/TPG 10.10.05

Formal Programming Language Semantics note 6

A language with side-effects

We now consider another extension of IMP which embodies a typical character-
istic of real programming languages: namely, that the evaluation of expressions
not only yields a value but can also have side-effects, such as modifying the state
or printing some output. In real languages, this can happen in numerous ways
— for instance, an expression might consist of a function call, and the execution
of the function body might print something or change the value of some vari-
able — but here we will illustrate the principle by considering the postincrement
operator familiar from C and Java.

A language with postincrement Let IMPs be the language obtained by extend-
ing the syntax of IMP with a new phrase form for arithmetic expressions:

a ::= X++

Informally, in any state, an expression X++ will evaluate to the same value as
X, but in the case of X++ the evaluation will have the side-effect of incrementing
X. (Note that the evaluation yields the old value of X, not the new one. In C
and Java there is also an analogous preincrement operator which yields the new
value.)

To give a semantics for IMPs, we will clearly need to capture not only what
expressions evaluate to but also their effect on the state. (Note that boolean
expressions can also have side-effects, since they may contain arithmetic ex-
pressions). We should therefore change the forms of evaluation statements for
arithmetic and boolean expressions to

〈a, σ〉 ⇓ 〈n, σ′〉, 〈b, σ〉 ⇓ 〈t, σ′〉.

The appropriate semantic rule for postincrement should obviously be

(18s)

〈X++, σ〉 ⇓ 〈n, σ′〉
σ(X) = n, σ′ = σ[X 7→ n + 1]

The other rules that explicitly deal with state — rules (2) and (12) of Note 4 —
should now be changed to

(2s)

〈X, σ〉 ⇓ 〈n, σ〉
σ(X) = n

(12s) 〈a, σ〉 ⇓ 〈n, σ′〉
〈X := a, σ〉 ⇓ σ′′ σ′′ = σ′[X 7→ n]

1



Formal Programming Language Semantics note 6 CS4/MSc/TPG 10.10.05

None of the other rules in the definition of IMP explicitly manipulates the state.
However, we will also need to change many of the other rules to accommodate
the fact that the forms of evaluation statements have changed. It is obvious what
changes we need to make: for instance, rules (3) and (17) should now become

(3s) 〈a0, σ〉 ⇓ 〈n0, σ
′〉 〈a1, σ

′〉 ⇓ 〈n1, σ
′′〉

〈a0 - a1, σ〉 ⇓ 〈n, σ′′〉
n = n0 − n1

(17s) 〈b, σ〉 ⇓ 〈true, σ′〉 〈c, σ′〉 ⇓ σ′′ 〈while b do c, σ′′〉 ⇓ σ′′′

〈while b do c, σ〉 ⇓ σ′′′

There is an obvious pattern here: the result state occurring in each premise
matches up, domino-fashion, with the initial state occurring in the following
premise. This simply captures the natural result of evaluating the various con-
stituents of the phrase in the appropriate order. In fact, one can codify this
pattern as a general rule, known as the state convention. Like the exception con-
vention mentioned in the previous note, this saves us a lot of tedious rewriting
of rules and helps to keep the clutter to a minimum. (The state convention was
used to good effect in this way in the definition of ML.)

To formulate the state convention precisely, it will actually be helpful to start
by erasing the state information from the rules of IMP (except for rules (2) and
(12), which explicitly make use of the state). Thus, in the remaining rules, we
may strip the three forms of the evaluation relation down to a ⇓ n, b ⇓ t, and
c ⇓ respectively. Let us call these formulae reduced evaluation statements. This
allows for a more concise presentation of the rules: for example, rules (3) and
(17) become respectively:

a0 ⇓ n0 a1 ⇓ n1

a0 - a1 ⇓ n
n = n0 − n1

b ⇓ true c ⇓ while b do c ⇓
while b do c ⇓

Given a reduced evaluation statement φ and two state metavariables σ, σ′, let us
write σ]φ]σ′ for the reconstituted evaluation statement defined as follows:

σ](a ⇓ n)]σ′ ≡ 〈a, σ〉 ⇓ 〈n, σ′〉,
σ](b ⇓ t)]σ′ ≡ 〈b, σ〉 ⇓ 〈t, σ′〉,
σ](c ⇓)]σ′ ≡ 〈c, σ〉 ⇓ σ′

We may now make precise the state convention as follows: given a formal rule

φ1 φ2 · · · φk

φ
side-cond

where the φi and φ are reduced evaluation statements, we understand this to
abbreviate the ordinary rule:

σ0]φ1]σ1 σ1]φ2]σ2 · · · σk−1]φk]σk

σ0]φ]σk

side-cond

(where the side-condition is the same as in the reduced rule).

To summarize, the complete semantic rules for IMPs are: the erased forms of
rules (1), (3)–(11) and (13)–(17) from Note 4 (with the state convention applied),
together with rules (2s), (12s) and (18s) above.

2



Formal Programming Language Semantics note 6 CS4/MSc/TPG 10.10.05

Languages with output The idea behind the state convention can usefully be
applied to describe other kinds of side-effects. For example, let IMPo be the lan-
guage IMP extended with the arithmetic expression form print a, which evalu-
ates to the value of a but with the side-effect of outputting the value of a. Thus,
the output obtained from a program will in general be a list of integers.

To give a semantics for this language, let us write O for the set of lists of
integers, with o, o1, . . . ranging over O. We write o; n for extension of a list by a
single element, and o1@o2 for concatenation of lists. In place of the evaluation
relation 〈P, σ〉 ⇓ R of IMP, we now define an relation 〈P, σ〉 ⇓o R, meaning “in state
σ, running P yields the result R and the output o”. The rule for print is

(19s) 〈a, σ〉 ⇓o n

〈print a, σ〉 ⇓o′ n
o′ = o; n

The remaining rules for IMPo can then be obtained from the (original) rules for
IMP by means of the following output convention:

〈P1, σ1〉 ⇓ R1 · · · 〈Pk, σk〉 ⇓ Rk

〈P, σ〉 ⇓ R

becomes 〈P1, σ1〉 ⇓o1 R1 · · · 〈Pk, σk〉 ⇓ok
Rk

〈P, σ〉 ⇓o R
o = o1@ . . . @ok

(Side-conditions in the original rule must also be included in the new rule.)

[Exercises: Add some further machinery to specify the output produced by
non-terminating programs. Think about how one might describe a language
with input as well as output.]

Patterns and observational equivalence An important question, both for pro-
grammers and compiler writers, is “When do two program phrases P1, P2 yield
the same behaviour?”. If they do, we (or a compiler) can legitimately replace the
less efficient one (P1 say) by the more efficient one (P2), knowing that the overall
result of the program will be unaffected.

A very important point, which we wish to emphasize in this course, is that the
answer to the above question depends very much on the language in question.
For instance, from the discussion at the end of Note 5, it should be intuitively
clear that in IMP, the phrases b0 and b1 and b1 and b0 have the same behaviour
for any boolean expressions b0, b1, while this is not true in IMPe, nor indeed in
IMPs, since evaluation order clearly matters when we have side effects. [Exercise:
give an example to show this.] Likewise, in both IMP and IMPe the phrases b
and b and b always have the same behaviour (satisfy yourself that this is true),
though in IMPs they do not (give an example to show this). In general, one can
say that the larger the programming language, the more “fine-grained” this kind
of behavioural equivalence will be.

Using the operational ideas we have seen so far, we can formulate some pre-
cise definitions to capture the intuitive notion of “having the same behaviour”.
The question of how to prove that two given phrases have the same behaviour
(if they do!) is something we shall return to later — it is one of the things that
denotational semantics is good for.

3



Formal Programming Language Semantics note 6 CS4/MSc/TPG 10.10.05

In the following definitions, let L be any programming language equipped with
an evaluation relation 〈P, σ〉 ⇓ R of the kind discussed in the notes.

• A pattern of L is (loosely speaking) a phrase of L which may contain metavari-
ables which each range over a particular phrase category. For instance,
if a0 = a1 then c0 else c1 is a pattern of IMP containing the metavariables
a0, a1 ranging over Aexp, and c0, c1 ranging over Com. [If you want to be
more formal about it, one can obtain a grammar for patterns from a gram-
mar for L by adding in a clause for metavariables of each phrase category,
e.g. a ::= Aexp–metavar.]

• A substitution γ for L is any function mapping metavariables to phrases of
L of the appropriate category.

• Given a pattern P and a substitution γ which covers all the metavariables of
P , we write P γ for the phrase obtained from P by replacing each metavari-
able x by the corresponding phrase γ(x).

• Let us say two patterns P1, P2 are functionally equivalent in L (this is not
quite standard terminology!) if for any substitution γ for L covering all the
metavariables of P1, P2, any state σ and any result R we have

〈P γ
1 , σ〉 ⇓ R iff 〈P γ

2 , σ〉 ⇓ R.

• A context of L is a pattern involving a single metavariable (which may occur
more than once in the pattern). If C is a context, we write C[P ] for the
phrase obtained from by replacing each occurrence of the metavariable by
P (assuming P is of the right phrase category).

• We say two patterns P1, P2 are observationally equivalent in L if for any
context C of the appropriate type, and any substitution γ, state σ and result
R as above, we have

〈C[P γ
1 , σ]〉 ⇓ R iff 〈C[P γ

2 , σ]〉 ⇓ R.

Thus, to revisit the examples mentioned above, the patterns b0 and b1, b1 and b0

are observationally equivalent in IMP, though not in IMPe or IMPs, while the
patterns b, b and b are observationally equivalent in IMP and IMPe but not IMPs.

[Once you have digested all this, here are some further questions you might
like to ponder: (a) Is observational equivalence actually stronger than functional
equivalence for the languages we’ve considered? (b) Can two patterns be ob-
servationally equivalent in IMPs but not in IMPe? (c) How does observational
equivalence in IMPo compare with the others?]

John Longley

4


