
Formal Programming Language Semantics note 5 CS4/MSc/TPG 19.10.02

Formal Programming Language Semantics note 5

A language with run-time errors

The language IMP defined in Notes 3 and 4 serves to illustrate the basic tech-
nique of structural operational semantics. However, IMP is not a very interesting
language in that there is really only one reasonable semantics for it. (One can
of course think of minor variations on the definition we have given, but most of
these end up defining exactly the same evaluation relation.) Thus, it does not
serve to illustrate any of the interesting semantic choices that arise in language
design, or the ways in which a formal semantics can capture these.

In this and the next few notes, we will extend and mutilate the language IMP
in various ways. This will allow us to examine some of the semantic choices
that can arise and the difference these choices make; it will also give us an
opportunity to extend our repertoire of techniques for giving language definitions
in an operational style.

Dynamic scoping. In IMP, we were concerned with programs involving a fixed
set of program variables to which an initial value had already been assigned. We
will now consider a variant IMPe in which locations for variables are not allocated
until a value is assigned to them — this brings us a step closer to realism, and
means that we can allow an infinite set of identifiers if we want. In IMPe, we
don’t have to explicitly declare the variables we want to use — a memory cell will
automatically be allocated to a variable X the first time we attempt to assign to
X. If we attempt to read the variable before we have assigned to it, a run-time
error will result, specifying the identifier in question. (In these respects, IMPe

behaves like the version of BASIC I learned when I was at school. It is also
like the way macros in LaTeX behave, as I am constantly being reminded while
typesetting these notes!)

In general, we say a variable is in scope at a certain point in the execution
of a program if it exists (i.e. has been defined) at that point. In IMPe, the set
of variables in scope at a given time is determined simply by which variables
happen to have been assigned in the course of the execution. Note that it is
possible for a variable X to be in scope at a certain point in a program even if
no assignment to X occurs before this point in the program text. [Exercise: give
an example to illustrate this.] We therefore say that IMPe has dynamic scoping
— that is, which variables are in scope at a certain point is not determined until
run-time.

In a dynamically scoped language, it will in general be undecidable whether or
not all the variables occurring in the program will always be in scope whenever

1



Formal Programming Language Semantics note 5 CS4/MSc/TPG 19.10.02

they are evaluated. We therefore cannot expect a compiler to be able to check
in all cases whether a program is “well-scoped” — we are therefore forced to
cater for the possibility that programs will attempt to evaluate an out-of-scope
variable. Something like run-time errors are therefore inevitable.

Dynamic scoping contrasts with the static scoping of languages like Java and
ML, in which the scope of variables can be determined at compile-time from the
textual structure of the program. (The most common kind of static scoping is
lexical scoping, in which the scope of variables is determined in a simple way
by the block structure of programs.) We will consider the semantics of statically
scoped languages in a later note.

Definition of IMPe. The syntax of IMPe is identical to that of IMP. However,
we will need to modify the semantics in order to say what happens when not all
the variables have been allocated. Firstly, we will need to change the definition
of state: a state for IMPe should now be a function σ : I → (Z ∪ {?}), where ? is a
special value signalling “undefined”. We will write S? for the set of states in this
new sense. (Equivalently, we could take states to be partial functions from I to
Z; this is really just a question of taste and there is not much to choose between
them.)

Secondly, we need to change the set of possible results of running a compu-
tation to take account of the possibility of run-time errors. If we attempt to read
an unassigned variable X, we would like an error to be raised giving us the name
of X. Let us therefore define a set of error values E by

E = {undef (X) | X ∈ I}.

We will use e, e′, . . . as variables ranging over E.

The result of evaluating an arithmetic expression will either be a normal inte-
ger or an error value, so let us write Ze for the set Z t E. Similarly, evaluating a
boolean expression can give either a truth value or an error value, so let us take
Te = T t E. Finally, the execution of a command can either terminate normally
yielding a final state, or can terminate prematurely if an error arises, so let us
take Se

? = S? t E. Summarizing all this, the evaluation relation for IMPe will be
some subset

E ⊆ (Aexp × S? × Ze) t (Bexp × S? × Te) t (Com × S? × Se
?).

(Of course, one might also be interested in saying what the final state should be
even when an error has arisen, but we shall make life easier for ourselves by not
being interested in this.)

We now have to modify the semantic rules given in Note 4. The rule for

2



Formal Programming Language Semantics note 5 CS4/MSc/TPG 19.10.02

evaluating a variable (2) will need to be replaced by two new rules:

(2.1e)

〈X, σ〉 ⇓ n
σ(X) = n

(2.2e)

〈X, σ〉 ⇓ undef (X)
σ(X) =?

All the remaining rules in Note 4 (including the definition of σ[X 7→ n] and the
rule for assignment (14)) are still correct for describing normal (i.e. error-free)
computations, and can be left unchanged.

The exception convention. Finally, we need to add rules to ensure that if
an error arises in the course of running a program, it is propagated so that
the result of executing the whole program is the corresponding error value. A
moment’s reflection shows that we will need to add a lot of extra rules in order
to achieve this. For instance, consider rule (14) from the definition of IMP:

〈b, σ〉 ⇓ true 〈c0, σ〉 ⇓ σ′

〈if b then c0 else c1, σ〉 ⇓ σ′

This rule tells us how what a normal execution of a conditional looks like (when
the condition is true), but we also have to take account of the possibility of an
error arising, either in the evaluation of the condition b or in the execution of c0.
This means that in addition to the above rule (14) we need two further rules:

(14.1e) 〈b, σ〉 ⇓ e

〈if b then c0 else c1, σ〉 ⇓ e

(14.2e) 〈b, σ〉 ⇓ true 〈c0, σ〉 ⇓ e

〈if b then c0 else c1, σ〉 ⇓ e

In fact, we will need to add propagation rules like this for every existing rule
in the semantics with at least one premise. However, rather than writing out
endless lists of boring propagation rules, we can simply describe the general way
in which these rules are obtained from the existing ones. In general, for each
rule whose form (ignoring side-conditions) is

〈P1, σ1〉 ⇓ R1 · · · 〈Pk, σk〉 ⇓ Rk

〈P, σ〉 ⇓ R

and for each 1 ≤ i ≤ k, we add an extra rule of the form

〈P1, σ1〉 ⇓ R1 · · · 〈Pi, σi〉 ⇓ e

〈P, σ〉 ⇓ e
R1, . . . , Ri−1 6∈ E

where e is a metavariable ranging over E and not occurring in the original rule.
This way of specifying the necessary propagation rules is known as the exception

3



Formal Programming Language Semantics note 5 CS4/MSc/TPG 19.10.02

convention; it is useful for describing how exceptions propagate in ML or Java,
for instance.

Having given the semantic rules for IMPe, the evaluation relation is defined by
induction in the usual way. This completes our definition of the language IMPe.

[Exercise: Devise an additional language construct for trapping exceptions,
similar to handle in ML or catch in Java. Give a suitable semantic rule for this
construct.]

Semantic choices manifested by errors. When we gave the semantics of IMP
we made certain choices regarding the form of the rules, but we did not bother
to draw attention to these choices, since typically in IMP they did not make any
difference to the evaluation relation. Some of these choices concern evaluation
order. For example, we could have replaced rule (3) for subtraction by the follow-
ing rule, which suggests that we intend a1 to be evaluated before a0:

(3′) 〈a1, σ〉 ⇓ n1 〈a0, σ〉 ⇓ n0

〈a0 - a1, σ〉 ⇓ n
n = n0 − n1

However, this gives rise to exactly the same evaluation relation, so an imple-
menter of IMP would be free to choose a different evaluation order from the one
suggested by the definition.

In IMPe, however, a real difference emerges between rules (3) and (3’): there
are programs that yield a different result depending on which rule we specify.
[Exercise: give an example!] A formal semantics for the language will typically
capture aspects of evaluation order that are significant for the behaviour of pro-
grams, and will thus specify exactly how such programs are intended to behave.

As a related example, we could have given the rules for and in a different way:
In place of rules (9) and (10), we could have given the single rule

(9′) 〈b0, σ〉 ⇓ t0 〈b1, σ〉 ⇓ t1
〈b0 and b1, σ〉 ⇓ t

t = t0 ∧ t1

where the operation ∧ is defined by means of the usual truth-table. What dif-
ference would this make? In contrast to the old definition, this new definition
suggests that even if b0 evaluates to false, we need to plough on and evaluate b1.
In fact, in the case of IMP, it will not make any difference to the semantics if we
do this (it will merely make the execution inefficient). In the case of IMPe, how-
ever, there is a genuine difference between the two kinds of and . [Exercise: give a
program that illustrates this.] Note that in Java, both kinds of and are provided
as primitives: && is used for the “short circuit” version (also called “conditional
and”), and & for the one that evaluates both arguments (also called “strict and”).

John Longley

4


