
Formal Programming Language Semantics note 15 CS4/MSc/TPG 01.12.02

Formal Programming Language Semantics note 15

Full abstraction and universality

As we have seen, our CPO model of PCF gives us a good way of proving obser-
vational equivalences between PCF programs: if we can show that [[e]] = [[e′]],
we know that e and e′ are observationally equivalent. However, it is natural to
ask whether all observational equivalences can in principle be established in
this way. Might there be two programs e, e′ which are observationally equivalent
but such that [[e]] 6= [[e′]]? If so, the CPO model could be regarded as somehow
deficient, in that it would not offer a “complete” solution to the observational
equivalence problem. One might then wonder whether some other kind of deno-
tational model might do better.1

This in turn touches on a more general question: “When is a denotational
semantics a good one?” — that is, in what ways might a denotational semantics
might be said to enjoy a particularly “close fit” with the programming language it
is intended to model? In this note we will consider these questions in the context
of PCF and closely related languages, though actually the essential ideas can be
applied to virtually any language for which we know how to give a denotational
semantics.

The general situation we are considering is that one defines some mathemat-
ical structure Mτ for each type τ , and interprets (closed) terms e : τ as elements
[[e]] ∈ Mτ . In this setting we may consider the following notions:2

• Such a model is fully abstract if for all closed terms e, e′ : τ , if e and e′ are
observationally equivalent then [[e]] = [[e′]]. (This is the converse to what is
given by adequacy; it expresses the idea that the model captures all possible
observational equivalences.)

• A model is universal if for every element x ∈ Mτ there is a closed term e : τ
such that [[e]] = x. (This captures the idea that the model contains no “junk”
that does not correspond to the behaviour of any possible program.)

Failure of universality. Is our CPO model of (call-by-name) PCF fully abstract
and/or universal? It is easy to see that the model as we have defined it is not

1We have illustrated one particular flavour of denotational semantics, using CPOs and con-
tinuous functions. However, there are many other kinds of denotational models of PCF on the
market: these include stable domain models, game models, realizability models, logical relation
models and metric space models.

2Actually it is more usual to give slightly more complicated definitions of these notions in-
volving arbitrary terms, not just closed ones. Here we have gone for slightly simpler definitions
which are equivalent to the usual ones for most of the models encountered in practice.

1

Formal Programming Language Semantics note 15 CS4/MSc/TPG 01.12.02

universal, since even at type int -> int the model contains (uncountably many!)
non-computable functions, which cannot be defined by any program. In fact, it
seems clear that any universal model (in the above sense) will need to have some
notion of computability built into it. One can in fact do this with our CPO model,
and give a reasonable mathematical definition of what we mean by a computable
element of each CPO [[τ]]. (The details are rather involved, and we will not give
them here.) So the right question to be asking is: Is every computable element of
each [[τ]] denotable by some PCF term?

Perhaps surprisingly, the answer is still no. There is a famous counterexam-
ple known as the “parallel-or” function. Let por ∈ [[bool -> bool -> bool]] be the
two-argument function defined by:

por x y =

true if x = true or y = true
false if x = y = false
⊥ otherwise.

It is clear that this function is “computable” in some intuitive sense: given
two arguments x, y, we may try to evaluate x and y in parallel, and if either ever
returns true then we return true, regardless of whether the other one ever termi-
nates. If one argument returns false then we need to keep on trying to evaluate
the other argument, but if both eventually return false then we may return false.
In agreement with this intuition, it turns out that por is indeed a computable el-
ement of [[bool -> bool -> bool]] in the mathematical sense mentioned above.

However, it also seems intuitively plausible that por cannot be computed by
any PCF program. Intuitively, this is because PCF behaves in a “sequential”
manner — any program for por would have to evaluate either x or y first, and
could not do anything else until this evaluation has finished. The problem is that
whichever argument we choose to evaluate first, if we are unlucky this argument
might diverge, whilst the other argument might yield true and we would never
discover this. This argument can in fact be made completely rigorous, and it
can be proved as a theorem that por is not definable in PCF. Thus, even the
computable version of the CPO model is not universal.

Failure of full abstraction. One can also use the parallel-or function to show
that the CPO model is not fully abstract. It is possible to give two PCF terms

e, e′ : (bool->bool->bool)->bool

whose respective denotations are functions

[[e]], [[e′]] : [[bool -> bool -> bool]] → [[bool]]

which agree on all PCF-definable elements x ∈ [[bool -> bool -> bool]], but which
have different values when applied to por. For example, helping ourselves to
some harmless syntactic sugar, we could take e, e′ respectively to be

fn f : bool->bool->bool => f true diverge AND f diverge true
fn f : bool->bool->bool => f diverge diverge

2

Formal Programming Language Semantics note 15 CS4/MSc/TPG 01.12.02

Although these terms denote different functions in our model, they are observa-
tionally equivalent since the difference cannot be detected within PCF itself.

Moving the goalposts. All this might lead us to ask whether one can give an
alternative denotational semantics of PCF which is better than our CPO model.
However, there is another way of responding to the deficiencies of the CPO model:
rather than look for another model to match the language, we can try to change
the language to match the model! This may seem like moving the goalposts, but
it is in any case an interesting general point that denotational models can in
principle suggest possible extensions to existing programming languages. One
way to interpret the failure of universality is to say that the parallel-or operator
is “missing” from PCF, so let us try adding it! We will extend the grammar of PCF
by adding a new expression form por e0 e1, with the associated typing rule

Γ ` e0 : bool Γ ` e1 : bool

Γ ` por e0 e1 : bool

We now add the following reduction rules to the operational semantics:

por true e1 → true
por e0 true → true

por false false → false

along with the rules: if e → e′ then por e e1 → por e′ e1 and por e0 e → por e0e
′.

Notice that this makes the reduction relation non-deterministic: given a term
por e0 e1 the computation may proceed by reducing either e0 or e1. However, the
final value resulting from any such computation is still deterministic, and does
not depend on the order of evaluation chosen — thus, por does not fundamen-
tally alter the “functional” character of the language. We will write PCF+ for the
new language PCF+por .

We can also extend our denotational semantics in an obvious way, using the
semantic function por to interpret the syntactic construct por . [Exercise: for-
mulate the precise definition of [[por e0 e1]]Γ in terms of [[e0]]Γ and [[e1]]Γ.] Rather
surprisingly, we now have the following theorem: The CPO model is fully abstract
for PCF+. (The proof of this is quite hard.) The point is that by expanding the
language we have made it possible to perform more observations on programs, so
the relation of observational equivalence has shrunk, and in fact now coincides
exactly with denotational equality in the CPO model.

Although por solves the problem with full abstraction, it is not by itself
enough to make the (computable) CPO model universal. However, we can achieve
universality by adding just one further “parallel” operator to the language: a
second-order gadget known as the exists operator. This operator allows one
to perform (potentially) infinitely many tests of a certain kind in parallel, but de-
spite its infinitary nature it is still “computable” (i.e. you really can implement it
on a machine!). The typing rule associated with this operator is as follows:

Γ ` e : int -> bool

Γ ` exists e : bool

3

Formal Programming Language Semantics note 15 CS4/MSc/TPG 01.12.02

The reduction rules may be given as follows (we write diverge for the non-
terminating program fix (x:int = x) of type int).

• If e n →∗ true for some n, then exists n → true.

• If e diverge →∗ false, then exists e → false.

[Exercise: this presentation is slightly sloppy in that the definitions of → and →∗

are now mutually recursive. Give a more rigorous formulation of what I intend
to say here.]

Let us write PCF++ for the language PCF extended with both por and exists .
We can interpret PCF++ in the CPO model, and we now have a very pleasing re-
sult: the (computable) CPO model is both fully abstract and universal for PCF++.
This result tells us that, in some sense, the language PCF++ is now “complete” in
that it can express all computable functions at the types we are considering —
no further computable functions can be added which are not already expressible
in PCF++. This striking fact can be thought of as a kind of “Church’s Thesis” for
functions of higher type.

Fully abstract and universal models in general. Let us return to PCF in its
pure “sequential” version, with no funny parallel operators. Can one give a fully
abstract and/or universal model for PCF in a reasonable way, perhaps by find-
ing some suitable mathematical property which characterizes the “sequentially
computable” functions?

Curiously, this problem turns out to be much harder for pure PCF than
for many other apparently more complicated languages that have been stud-
ied. Around 1993, some fully abstract and universal models of PCF were indeed
constructed using the ideas of game semantics, but even these models are in
practice not very usable for establishing observational equivalences. In 1994,
Ralph Loader proved a surprising negative result, which in some sense says that
there are no “really good” models of PCF — this gives some kind of theoretical
explanation for the difficulty encountered in constructing such models.

It’s worth noting, though, that for PCF and many other languages, one can
obtain a fully abstract and universal model in a rather “cheating” way. Define a
model M as follows: for each type τ , let Mτ be the set of closed terms e : τ modulo
the observational equivalence relation, and define the interpretation of any term
e in M to be just the equivalence class of e. It’s not too hard to check that this
indeed gives us an adequate, compositional model (e.g. for PCF), which is fully
abstract and universal virtually by definition. Such models are often called term
models because they are built using terms of the language itself.

The term model construction is fundamentally useless for proving observa-
tional equivalences, since it is defined using the notion of observational equiva-
lence. The real interest of denotational semantics lies in trying to give “syntax-
independent” constructions of fully abstract/universal models which shed gen-
uinely new light on the languages in question.

4

