
Formal Programming Language Semantics note 14 CS4/MSc/TPG 01.12.02

Formal Programming Language Semantics note 14

Operational semantics of PCF

In the interests of historical realism, and also for the sake of variety, we decided
to give a denotational semantics of PCF first. However, it is not immediately ob-
vious from the denotational semantics whether PCF is “executable” in any rea-
sonable sense, i.e. whether there is a reasonable procedure for evaluating PCF
expressions. (If there isn’t, we can hardly call PCF a programming language!)
Here we address this issue by showing how to give an equivalent operational se-
mantics. This was first done by Plotkin in his classic 1977 paper “LCF considered
as a programming language”.

A small-step semantics. For the sake of variety, we will give a small-step op-
erational semantics for PCF, in order to illustrate this style of semantics.1 We
will concentrate on the “pure” fragment of PCF consisting only of expressions.
(Clearly, any program involving previously declared variables can be translated
to a “pure PCF” term just by expanding out all the definitions — assuming we
are thinking of static binding, which I am.) We are only really interested (here) in
defining the result of evaluating terms of ground type (int or bool) — a term of
function type will not result in a usable “value”, but will merely sit there waiting
to be applied to something. Let us therefore define a value to be either an integer
literal n or a boolean literal t; we use v to range over values. We will now give
rules to define a relation e → e′, where e and e′ are closed terms of the same type.
This relation may be read as “e reduces to e′”, and is supposed to capture the
idea of a single computation step. First, we have the following rules for directly
reducing expressions of various shapes:

n0 - n1 → n (n = n0 − n1)
n0 = n1 → true (n0 = n1)
n0 = n1 → false (n0 6= n1)

if true then e0 else e1 → e0

if false then e0 else e1 → e1

(fn x => e0) e1 → e0[e1/x]
fix (x : τ = e) → e[fix x : τ = e/x]

Here e0[e1/x] means the result of replacing all free occurrences of x in e0 by e1 (we
should not replace occurrences of x underneath a binder fn x => · · · within e0).
We also need some other rules to allow reductions to be applied to subexpres-
sions within a larger expression. Specifically, if e → e′ then

1From now on we will work with the version of PCF with Fix rather than the one with fun
declarations as primitive.

1

Formal Programming Language Semantics note 14 CS4/MSc/TPG 01.12.02

e e0 → e′ e0

if e then e0 else e1 → if e′ then e0 else e1

e - e0 → e′ - e0

n - e → n - e′

e = e0 → e′ = e0

n = e → n = e′

whenever these terms are well-typed. (If preferred, one could write all these as
inference rules with a single premise e → e′.) As usual, we take e → e′ to be the
smallest relation with the above properties.

We now define →∗ to be the reflexive-transitive closure of → (i.e. e →∗ e′ if e
can be reduced to e′ in zero or more steps). Finally, if e is a closed term of ground
type, we write e ⇓ v to mean that e →∗ v and v is a value.

This completes the operational semantics of PCF. One rather nice feature of
this approach is that we have no need for any notion of environment: we can
work entirely with closed terms by themselves.

Note that the relation → is deterministic: for any e there is at most one e′

such that e → e′. It follows easily that ⇓ is also deterministic. In fact, the
above rules enforce a certain evaluation strategy for programs: for instance, to
run a program e0 e1, first reduce e0 as much as possible, then if this yields an
abstraction fn x => e, replace x by e0 in e1 and continue.

The adequacy theorem. As with IMP, we have a central theorem saying that
our operational semantics agrees with the denotational semantics of Note 12:
For any closed term e of ground type τ , and any value v of type τ ,

e ⇓ v iff [[e]] = v.

(Strictly speaking, since e is closed, its interpretation [[e]]∅ is a function from a
one-element set to [[τ]]; we are writing [[e]] to refer to the element of [[τ]] picked
out by this function. Note that v ranges over non-bottom elements of [[τ]].)

The proof of the left-to-right implication is straightforward, and follows the
same pattern as the corresponding proof for IMP: we are assuming that e ⇓ v
and can argue by induction on the derivation of this fact. Since we are here
using a small-step semantics, it suffices to show as a lemma that if e → e′ then
[[e]] = [[e′]], and this is shown by an induction on derivation trees with one case
for each of the rules given above.

The proof of the right-to-left implication is harder and more interesting. We
are assuming that [[e]] = v and so would like to reason by induction on the syn-
tactic structure of e. However, there is a problem: the thing we are trying to
prove only makes sense for closed terms of ground type, and though e is a term
of this kind, it may well have subterms which contain free variables and/or are
of higher type. In order for the induction to go through, we therefore need to for-
mulate a suitable induction claim which makes sense for arbitrary subterms of

2

Formal Programming Language Semantics note 14 CS4/MSc/TPG 01.12.02

e, and which specializes to the property we are interested in in the case of closed
terms of ground type. This is a particularly striking example of a phenomenon
which arises very often in connection with proofs by induction: we often have to
prove something significantly stronger than what we are ultimately interested in,
and finding the right thing to prove can require considerable ingenuity.

In order to formulate the appropriate induction claim, let us introduce the
notion of a good PCF term, defined as follows:

• A closed term e of ground type is good if [[e]] = v implies e ⇓ v (note that this
is the property we are ultimately interested in).

• A closed term e : σ -> τ is good if for all closed e′ : σ, if e′ is good then e e′ is
good. (In other words, if e e′ is bad then it is not the fault of e.)

• A term e with free variables x1 : τ1, · · · , xr : τr is good if for all good closed
terms e1 : τ1, · · · , er : τr, the term e[e1/x1, . . . , er/xr] is good.

We can now prove that all terms are good (notice that this immediately implies
the right-to-left half of the adequacy theorem). The proof of this is now a straight-
forward induction on the structure of e, with just a little effort needed in the case
of the Fix construct [exercise!!]. The hard part of the proof lay in formulating an
appropriate definition of “goodness”.2

As was the case with IMP, we now have an adequate and compositional de-
notational semantics, so it is easy to see that if [[e]] = [[e′]] (where e, e′ are closed
terms of any type) then e and e′ are observationally equivalent in PCF (that is,
for any context C[−] and value v we have C[e] ⇓ v iff C[e′] ⇓ v). So one possible
use for the denotational semantics is to establish observational equivalences. We
will also see other uses of our adequacy result later when we consider axiomatic
semantics for PCF.

[Exercise: show that for any term e with free variables x, y : τ , the three terms

fix (fn x : τ = fix (fn y : τ = e)) , fix (fn x : τ = e[x/y]) ,
fix (fn y : τ = fix (fn x : τ = e))

are observationally equivalent. This can be used to show that various ways of
expressing mutual recursion in PCF are in fact equivalent. It would be quite fiddly
to establish these equivalences by purely operational reasoning.]

Call-by-value PCF. You may have noticed that the version of PCF we have pre-
sented is a call-by-name language (like Haskell, but unlike ML). This is manifest
in the rule for applying a function to an argument:

(fn x => e0) e1 → e0[e1/x].

Here we do not evaluate the argument e1 before passing it to the function, but
rather pass the expression e1 as the argument and only evaluate it if and when it

2This proof is essentially due to Gordon Plotkin, building on earlier ideas of Tait.

3

Formal Programming Language Semantics note 14 CS4/MSc/TPG 01.12.02

becomes necessary. We will now briefly look at how one would modify both the
operational and denotational semantics for a call-by-value language.

First, we need to make a tiny change to the syntax of the language: in ex-
pressions fix x : τ = e we insist that τ must be a function type (i.e. not int or
bool). This is because, as we shall see, we want to delay the application of the
reduction rule for fix until an extra argument has been supplied.

In a call-by-value language, only values may be passed as parameters. Since
a parameter may itself be of function type, we will need a notion of what is
meant by a value at function types. So let us revise our definition of a value
to include integer literals, boolean literals, fn -abstractions (that is, terms of the
form fn x => e), and fix expressions. The idea is that if we try to evaluate a
term of function type, the computation will “terminate” if we can reduce it as far
as either a fn -abstraction or a fix -expression — we cannot really progress any
further than this until an actual argument to the function is supplied. As before,
we let v range over values.

We now replace the small-step rules for fn and fix by

(fn x => e0) v → e0[v/x]
fix e v → e(fix e) v

and add one further rule: if e → e′ then v e → v e′. Thus, to evaluate an expression
e0e1, we would first reduce e0 to a value fn x => e, then reduce e1 to a value v, then
pass v as a parameter to the fn -abstraction. [Exercise: satisfy yourself that our
revised operational semantics accurately models evaluation behaviour in ML,
both at ground types and at function types.]

Now for the denotational semantics. First, consider how we ought to model a
function of type int->int . Whereas previously this was modelled by a function
Z⊥ → Z⊥, in a call-by-value language there is no possibility of passing a non-
terminating argument as a parameter, so a function Z → Z⊥ would seem more
appropriate. [Exercise: Give two terms of type int->int which have different
observable behaviour under call-by-name but the same behaviour under call-
by-value.] In fact, for each type τ it will be convenient to define two CPOs: a
CPO [τ] specifically for modelling values of type τ , and a CPO [[τ]] for modelling
arbitrary terms. The definitions of these CPOs may be given as follows:

[int] = Z, [bool] = T, [τ -> τ ′] = [τ] ⇒ [τ ′]⊥; [[τ]] = [τ]⊥

(We have made use here of the lifting operation on CPOs: for any CPO X, we
write X⊥ for the CPO obtained by adding a new least element, typically called ⊥.)

Once we have the denotation of types in place, it is not too hard to figure out
the appropriate changes to the definition of the denotation of terms for call-by-
value PCF (though the details are a bit fiddly). We can also prove an adequacy
theorem (exactly as stated above) for call-by-value PCF, reassuring us that our
operational and denotational semantics agree.

John Longley

4

