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Formal Programming Language Semantics note 13

A simple functional language

In this note we introduce a simple functional language which corresponds to a
certain “core” fragment of languages such as Standard ML and Haskell. This
language (and minor variants thereof) is known in the research literature as PCF
(Programming language for Computable Functions), and was first studied by
Scott, Plotkin and Milner in the ’70s. We will first give a denotational semantics
using CPOs, and later provide an operational semantics to match. This is true
to the way in which the ideas actually developed. Indeed, the language PCF was
largely inspired by the CPO model; the operational semantics came later, and the
ideas had a major influence on the design of Standard ML.

Syntax and static semantics of PCF. The types τ of PCF are given by:

τ ::= int | bool | τ0 -> τ1.

We think of τ0 -> τ1 as the type of functions from type τ0 to type τ1.

We assume we have an infinite supply of variables x , y , z , . . ., and use x as a
metavariable ranging over these (note the difference in typeface!). We also retain
our earlier conventions that n ranges over the set Z of integers, and t over the set
T of truth values.

The syntax of expressions e of PCF is given as follows:

e ::= n | t | e0 - e1 | e0 = e1 | if e0 then e1 else e2

| x | e0 e1 | fn x : τ => e | fix ( x : τ = e)

Apart from the fix construct, we have used ML syntax here. (As before, we
will not be too fussy about fine syntactic details, adding brackets whenever we
feel like it.) Note that the if construct is now a form of expressions rather
than commands; it is essentially the conditional expression form e0?e1: e2 of C or
Java. The expression form e0 e1 represents function application; here e0 must be
a function of an appropriate type, and e1 is its argument. The form fn x : τ => e is
called abstraction — it can be read as “the function which takes a value x of type
τ to e”, where the expression e typically involves x. (In lambda calculus notation,
this would be written as λx : τ. e.) The form fix ( x : τ = e) can be read as “the
least solution to the recursion equation x = e” (where again e typically involves
x); this form is inspired by the fact that we know how to solve such equations in
the world of CPOs.

To make the language feel more like ML, we may also add a layer of declara-
tions d of the form

d ::= val x = e
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allowing a variable x to be bound to an expression e for later use. We may then
regard ML-style function declarations like fun f x = e (where e may involve f as
well as x) as syntactic sugar for

val f = fix (f : τ0 -> τ1 = fn x : τ0 => e)

(for suitable types τ0 and τ1). Similarly for functions of several variables. Many
other ML constructs, such as pattern matching in function declarations, can also
be seen as sugar for suitable PCF expressions.

Not all the expressions generated by the above grammar are well-typed. The
typing rules below specify which are the well-formed expressions of PCF. As with
IMPb, we use the notion of a static environment [(x1, τ1), . . . , (xr, τr)] associating a
type to finitely many variables. We use Γ to range over static environments, and
use the notation Γ(x) with the same meaning as in Note 7. The following rules
allow us to derive assertions of the form Γ ` e : τ , meaning “in environment Γ, e
is a well-formed PCF expression of type τ”.

Γ ` n : int Γ ` t : bool

Γ ` e0 : int Γ ` e1 : int

Γ ` e0 - e1 : int

Γ ` e0 : int Γ ` e1 : int

Γ ` e0 = e1 : bool

Γ ` e0 : bool Γ ` e1 : τ Γ ` e2 : τ

Γ ` if e0 then e1 else e2 : τ Γ ` x : τ
Γ(x) = τ

Γ ` e0 : τ -> τ ′ Γ ` e1 : τ

Γ ` e0 e1 : τ ′
Γ; (x : τ) ` e : τ ′

Γ ` fn x : τ => e : τ -> τ ′

Γ; (x : τ) ` e : τ

Γ ` fix ( x : τ = e) : τ

Finally, the elaboration of a declaration in a certain static environment has the
effect of “returning” an extended static environment:

Γ ` e : τ

Γ ` val x = e ⇒ Γ; (x, τ)

Denotational semantics of PCF. We now give a denotational semantics for
PCF using CPOs. This will not be too difficult, since the language was in a sense
designed precisely to be a convenient notation for denoting elements of CPOs.
In our interpretation, every type τ will be interpreted as a CPO [[ τ ]], and every
(closed) expression e : τ will be interpreted as an element [[ e ]] of [[ τ ]].

We first define the interpretation of types. For int and bool , we will use the
CPOs Z⊥ and T⊥ defined in Note 11.

[[ int ]] = Z⊥, [[ bool ]] = T⊥.

For function types, we would naturally like [[ τ0 -> τ1 ]] to be some set of functions
from [[ τ0 ]] to [[ τ1 ]]. The following fact about CPOs gives us what we need:
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Proposition 1 Let (D,vD) and (E,vE) be CPOs. Define D ⇒ E to be the set of all
continuous functions f : D → E, and let v be the relation on D ⇒ E defined by

f v g ⇐⇒ ∀x ∈ D. f(x) vE g(x).

Then (D ⇒ E,v) is itself a CPO. Furthermore, if E has a least element ⊥, then
D ⇒ E has least element Λx.⊥ (which we also write as ⊥).

We may therefore complete the interpretation of PCF types by defining

[[ τ0 -> τ1 ]] = [[ τ0 ]] ⇒ [[ τ1 ]].

Next, we define the denotation of an environment Γ = [(x1, τ1), . . . , (xr, τr)] to be

[[ Γ ]] = [[ τ1 ]]× · · · × [[ τr ]].

We have not officially defined what we mean by a product of CPOs, but it is
fairly obvious. [Exercise: fill in this gap!] Elements of [[ Γ ]] play a role somewhat
analogous to the dynamic environments or states in Note 7 — they assign ac-
tual denotations (rather than just types) to the variables in Γ. We will use ~z or
(z1, . . . , zr) to range over [[ Γ ]].

A closed term e : τ (one with no free variables) will simply denote an element
of [[ τ ]]. However, if e : τ involves free variables drawn from Γ, the meaning of e
will clearly depend on the values assigned to the free variables. So we will define
the denotation of e in environment Γ to be a certain continuous function

[[ e ]]Γ : [[ Γ ]] → [[ τ ]].

We will make use of the following auxiliary functions:

minus : Z⊥ × Z⊥ → Z⊥, (x, y) 7→
{

x− y if x, y ∈ Z
⊥ otherwise

equals : Z⊥ × Z⊥ → T⊥, (x, y) 7→


true if x, y ∈ Z and x = y
false if x, y ∈ Z and x 6= y
⊥ otherwise

condτ : T⊥ × [[ τ ]]× [[ τ ]] → [[ τ ]], (b, x, y) 7→


x if b = true
y if b = false
⊥ if b = ⊥

We also define Fixτ : [[ τ -> τ ]] → [[ τ ]] to be the operation which maps a continuous
function f : [[ τ ]] → [[ τ ]] to its least fixed point x ∈ [[ τ ]]. The definition of [[ e ]]Γ can
now be given by induction on the structure of e:1

1Strictly speaking, we ought to verify that the right hand side of each clause defines a contin-
uous function. This will ensure that the function we are attempting to apply Fixτ to in the last
clause is always continuous.
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[[ n ]]Γ(~z) = n

[[ t ]]Γ(~z) = t

[[ e0 - e1 ]]Γ(~z) = minus ([[ e0 ]]Γ(~z), [[ e1 ]]Γ(~z))

[[ e0 = e1 ]]Γ(~z) = equals ([[ e0 ]]Γ(~z), [[ e1 ]]Γ(~z))

[[ if e0 then e1 else e2 ]]Γ(~z) = condτ (([[ e0 ]]Γ(~z), [[ e1 ]]Γ(~z), [[ e2 ]]Γ(~z))

[[ x ]]Γ(~z) = zj, where j is largest s.t. xj ≡ x

[[ e0 e1 ]]Γ(~z) = [[ e0 ]]Γ(~z)([[ e1 ]]Γ(~z))

[[ fn x : τ => e ]]Γ(~z) = Λv ∈ [[ τ ]]. [[ e ]]Γ;(x,τ)(~z, v)

[[ fix ( x : τ = e) ]]Γ(~z) = Fixτ (Λv ∈ [[ τ ]]. [[ e ]]Γ;(x,τ)(~z, v))

Finally, if d is a declaration such that Γ ` d ⇒ Γ′, it is natural to define its
denotation [[ d ]]Γ to be a continuous function [[ Γ ]] → [[ Γ′ ]] as follows:

[[ val x = e ]]Γ (z1, . . . , zr) = (z1, . . . , zr, [[ e ]]Γ)

Another example of fixed points. As a brief digression, let us revisit some-
thing from Note 4 — the idea of defining an evaluation relation from a set of rule
instances — and show how this gives another example of CPOs and fixed points.
First, for any set A, consider the powerset P(A) (that is, the set of all subsets of
A), endowed with the usual subset ordering ⊆. It is clear enough that this is a
poset, and that it is complete: given any chain X0 ⊆ X1 ⊆ · · · of subsets of A,
their union

⋃
Xi is also a subset of A, and is clearly the least upper bound of the

Xi. Thus, (P(A),⊆) is a CPO.

Now suppose A is some set V of “potential evaluation statements”, like the
V we defined in Note 4. Our problem was to define a subset E ⊆ V consisting
of the “true evaluation statements”, given some set I of rule instances. We can
approach this problem as follows. Define an operator J : P(V ) → P(V ) by

J(X) = {φ ∈ V | ∃φ1, . . . , φk ∈ X s.t. φ1 · · ·φk

φ
∈ I}

In other words, J(X) is the set of things that can be proved from things in X
via a single rule instance. (Note that we don’t necessarily have X ⊆ J(X).) As
an exercise, you might like to check that J is monotone and continuous, so we
can take its least fixed point E ∈ P(V ). You should then satisfy yourself that this
coincides exactly with the set E we defined in Note 4.

John Longley
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