
Formal Programming Language Semantics note 12 CS4/MSc/TPG 18.11.02

Formal Programming Language Semantics note 12

Complete partial orders (CPOs)

In this note we re-examine some of the ideas in the previous two notes from a
slightly more abstract perspective. In particular, we are going to concentrate on
the ideas behind the denotational semantics of while commands. By isolating
the aspects of the situation which really made the semantics work, we will arrive
at the basic concepts of a subject known as domain theory, which provides a
general mathematical framework for much of denotational semantics.

Complete partial orders. Let us write D for the set DCom = (S ⇀ S) from Note 9.
Recall that we defined an element h ∈ D as the union of an increasing chain
h0 ⊆ h1 ⊆ · · · . We now ask: what are the essential features of D that made this
construction work? One reasonable answer (though not the only one!) is given
by the following definitions:

Definition 1 A partially ordered set, or poset, is a set D equipped with a binary
relation v (called an order relation) such that the following hold for all x, y, z ∈ D:

• x v x (v is reflexive);

• if x v y and y v z then x v z (v is transitive);

• if x v y and y v x then x = y (v is antisymmetric).

Definition 2 A complete partial order, or CPO, is a poset with the following prop-
erty: every sequence of elements x0 v x1 v · · · in D has a limit or least upper
bound in D: that is, there is an element x ∈ D (written as

⊔
i xi) such that

• xi v x for all i (i.e. x is an upper bound for the sequence);

• if x′ is any other upper bound for the xi (i.e. xi v x′ for all i), then x v x′.

Posets arise ubiquitously in mathematics, and there are examples from ev-
eryday life: for example, the set of all people ordered by the relation “x is an
ancestor of y” (where we count each person as an “ancestor” of him- or herself!)
The notion of a CPO, however, is rather more special to domain theory.

It is easy to see that D equipped with the inclusion relation ⊆ on partial
functions is an example of a CPO: ⊆ is clearly a partial ordering, and given any
chain of partial functions h0 ⊆ h1 ⊆ · · · , their least upper bound is simply their
union

⋃
hi. We used the existence of least upper bounds in D when defining the

semantics of while .

1



Formal Programming Language Semantics note 12 CS4/MSc/TPG 18.11.02

Intuitively, we think of a CPO as a set of data values of some kind which can
be partially ordered by positive information content: we interpret x v y as saying
that any piece of positive information that can be obtained from x can also be
obtained from y. For example, in the case of D = (S ⇀ S), every true statement
of the form d(σ) = σ′ can be viewed as a piece of positive information about d —
this corresponds to the idea that we can run a certain command in state σ and
observe the resulting state σ′. Thus, d v d′ means that every such true statement
for d is also true for d′. Note that we do not consider statements of the form “d(σ)
is undefined” to be positive information, since we cannot in general observe them
to be true: if the execution of a command in state σ does not terminate, all an
observer can say at any stage is that it has not terminated yet.

Examples of CPOs. Usually, a particular CPO will be associated with some
particular type of programs or data, so that it makes sense to compare values
for information content. For example, the CPO D is associated with the class
Com of commands in IMP. Another good example is the CPO S of finite and
infinite sequences of integers, which we might use to model streams of data
values along some channel. Here the relevant ordering v is the prefix ordering
between sequences. [Exercise: satisfy yourself that (S,v) is indeed a CPO.]

A couple more (much simpler) examples will be useful in what follows. Sup-
pose we wish to model a language with a type int of integer expressions. If (as
in IMP), the evaluation of integer expressions always terminates, we can simply
use the set Z, which can be regarded as a rather trivial CPO with the discrete
ordering (n ⊆ n for each n, and that’s all). However, if non-terminating inte-
ger expressions are possible (as in the functional language we will consider in
Note 12), we should use the CPO Z⊥ = Zt{⊥}, where ⊥ (“bottom” or “undefined”)
represents non-termination. Clearly, the relevant information ordering on Z⊥ is
given by x v y iff x = y or x = ⊥. [Exercise: draw pictures of the posets Z and
Z⊥.] Similar remarks apply to boolean expressions, yielding a two-element CPO
T and a three-element CPO T⊥. [Draw these.]

Note that any finite poset is automatically a CPO, since every chain x0 v x1 v
· · · must eventually settle down to a constant value. In general though, most
of the CPOs we encounter will contain strictly increasing chains x0 @ x1 @ · · ·
whose least upper bound is not itself one of the xi. (Of course, our CPOs will also
contain many non-strictly-increasing chains, e.g. constant chains of the form
x v x v · · · , whose least upper bound is (surprise!!) x.)

Monotone and continuous functions. Apart from the domain D, the other
ingredient in the definition of the semantics of while was the (implicit) operator
H : D → D which took an “approximation” hk to a “next approximation” H(hk) =
hk+1. Specifically, H can be defined as follows:

H : d 7→ Λσ.

{
d(g(σ)) if f(σ) = true
σ if f(σ) = false.

2



Formal Programming Language Semantics note 12 CS4/MSc/TPG 18.11.02

where as in Note 9, f and g were the denotations of some boolean expression b
and command c respectively. We may now ask: what are the essential properties
of H that we were relying on? The following definition identifies two important
properties of H, and of computable functions between CPOs generally.

Definition 3 Let (D,vD) and (E,vE) be CPOs.

(i) A function f : D → E is monotone if it respects the ordering — that is, if for
all x, y in D we have

x vD y =⇒ f(x) vE f(y).

(ii) A monotone function f : D → E is continuous if it preserves least upper
bounds — that is, if for every chain x0 vD x1 vD · · · in D we have

f(
⊔
i

xi) =
⊔
i

f(xi).

(Note that the right hand side here is defined since we have a chain f(x0) vE

f(x1) vE · · · , since by assumption f is monotone.)

Since we have defined continuity only for monotone functions, if we say a func-
tion f is continuous we may take it as read that f is also monotone.

For example, it is easy to check that the function H is monotone and con-
tinuous. For the sake of completeness we give a proof here — but it’s BORING,
so skip to the end of this paragraph if this fact is already obvious to you! To
show H is monotone, suppose d v d′ ∈ D; we wish to show that H(d) v H(d′)
(also in D). For this, we need to show that for all σ ∈ S, if H(d)(σ) is defined
then so is H(d′)(σ) and these are equal. There are two cases. If f(σ) = false
then H(d)(σ) = H(d′)(σ) = σ. If f(σ) = true then H(d)(σ) = d(g(σ)), and in par-
ticular the RHS here is defined; but d v d′ so also H(d′)(σ) = d′(g(σ)) = d(g(σ).
To show H is continuous, suppose d0 v d1 v · · · is a chain in D, with d =

⊔
i di.

Since we already know H is monotone, we have H(di) v H(d) for each i, and so⊔
H(di) v H(d) since

⊔
H(di) is the least upper bound of the H(di). We wish to

show also that H(d) v
⊔

H(di) — that is, that for any σ ∈ S, if H(d)(σ) is defined
then H(d)(σ) = H(di)(σ) for some i. Again there are two cases. If f(σ) = false then
H(d)(σ) = H(d0)(σ) = σ. If f(σ) = true then in particular d(g(σ) is defined; but
d =

⊔
di and so we must have d(g(σ) = di(g(σ)) for some i; thus H(d)(σ) = H(di)(σ)

for this i. We have now shown that H(d) v
⊔

H(di) v H(d); it follows by antisym-
metry that H(d) =

⊔
H(di).

Computability implies monotonicity and continuity. In fact, the definitions
of monotonicity and continuity reflect intrinsic properties that any computable
operation must satisfy. For example, suppose we have a program P which reads
data from an input channel and writes data to an output channel (it may perform
read or write operations in any order). We may represent the behaviour of P by a
function f : S → S, where S is as defined on page 2. We may argue semi-formally

3



Formal Programming Language Semantics note 12 CS4/MSc/TPG 18.11.02

that f is inevitably monotone. Suppose we have two input streams s v s′ ∈ S;
then clearly, any output produced by P with input s will also be produced by P
with input s′ (since the computations will proceed identically until, if ever, the
former hangs up waiting for the next value from s), so we have f(s) v f(s′).

A similar semi-formal argument shows that f is inevitably continuous. The
key observation needed here is that any finite amount of output information can
only depend on a finite amount of input information, since the output must be
produced after some finite time, by which stage P has only had the opportunity
to look at finitely many input values. [Good exercise: work through this semi-
formal argument in detail, using this observation at the appropriate point.]

The fixed point property. We now come to the fundamental result about CPOs
and continuous functions which makes them good for denotational semantics.
We have already seen one example of this fact at work, in the construction of h
as the least upper bound of h0, h1, . . ., but the following theorem shows that the
same idea works much more generally, and provides the key to modelling many
iterative and recursive programming constructs.

Theorem 1 (Fixed point property) Let (D,v) be any CPO with a least element
⊥ (so that ⊥ v x for all x ∈ D), and let f be any continuous function from D to D.
Then f has a least fixed point x — that is, f(x) = x, and if f(x′) = x′ for some y
then x v x′. Moreover, x may be defined by x =

⊔
i f

i(⊥).

PROOF Let us write xi for f i(⊥). We first show that the elements xi form a
chain. Clearly x0 = ⊥ v x1 because ⊥ is the least element. And if xi v xi+1 then
xi+1 = f(xi) v f(xi+1) = xi+2, since f is monotone. Hence by induction xi v xi+1 for
all i. Thus, the xi form a chain and so have a least upper bound x =

⊔
i xi.

To see that x is a fixed point of f , we use the continuity of f :

f(x) = f(
⊔
i

xi) =
⊔
i

f(xi) =
⊔
i

xi+1 = x.

The last step holds since the least upper bound of x1 v x2 v · · · is clearly the
same as that of x0 v x1 v x2 v · · · .

To see that x is the least fixed point of f , suppose x′ is some other fixed point,
i.e. f(x′) = x′. Then clearly x0 v x′ since ⊥ is the least element; and if xi v x′ then
since f is monotone, xi+1 = f(xi) v f(x′) = x′. So by induction, xi v x′ for all i; in
other words, x′ is an upper bound for the xi. But this means x v x′ since x was
defined to be the least upper bound of the xi. �

As a first application, this shows that the element h constructed in Note 9 is
a fixed point of H: that is, h does indeed satisfy the “recursive” equation given on
page 3 of Note 9. This plugs a small gap in our earlier results.

More generally, the fixed point property gives us a way of making sense of
“circular” definitions of this kind within the world of CPOs.

4


