
Formal Programming Language Semantics note 11 CS4/MSc/TPG 16.11.02

Formal Programming Language Semantics note 11

Adequacy and its consequences

In this note we will consider the relationship between operational and de-
notational semantics. It may seem at first that there is not very much essential
difference between the approaches, so first let us try to articulate informally what
the important differences are. Certainly, one difference is just psychological: in
operational semantics we think of processes in time, whereas in denotational se-
mantics we tend to view the situation from the perspective of “eternity”. However,
there is another, more substantial difference. In operational semantics, we are
concerned with statements about the behaviour of programs in particular states,
and the relationships between such statements. In denotational semantics, we
are concerned with statements about the behaviour of programs in all states,
and the relationships between them. This makes a real difference, as we hope to
make clear by the end of this note.

The adequacy theorem Before proceeding further, let us see how to prove that
the operational and denotational semantics of IMP “agree”. One often expresses
this agreement by saying the denotational semantics is adequate with respect
to the operational semantics. (This rather suggests we are taking the latter as
the definition of the language and the former has to match it, though of course
it could be the other way round.) The proof may seem rather hard work, but
it is a worthwhile investment since many other results flow rather easily from
it. The proof also provides two good illustrations of the important technique of
structural induction. As is typical for such proofs, there are a lot of induction
cases to check, but almost all of them are trivial and boring.

Theorem 1 (Adequacy) Let P be any phrase of IMP. Then for any state σ and
any result value R we have

〈P, σ〉 ⇓ R ⇐⇒ [[P]](σ) = R.

PROOF (⇒) : We argue by induction on the height of the derivation tree for
〈P, σ〉 ⇓ R. We will show, first, that if 〈P, σ〉 ⇓ R has a derivation of height 1 then
[[P]](σ) = R; and secondly, that if [[P]](σ) = R whenever 〈P, σ〉 ⇓ R has a derivation
of height r, the same holds for height r + 1.

For the first part, we are supposing 〈P, σ〉 ⇓ R has a trivial derivation consist-
ing of just one evaluation rule with no premises. There are four such rules in
the operational semantics — rules (1), (2), (5) and (13) of Note 4 — so we just
need to consider each of these in turn. All four cases are trivial; we do rule (2)

1

Formal Programming Language Semantics note 11 CS4/MSc/TPG 16.11.02

as an example. If the rule in question is rule (2), then P is some identifier X,
and R = σ(X). But by clause (2) of the definition of [[−]] (see Note 9), we have
immediately that [[X]](σ) = σ(X) as required. Likewise for the other three cases.

For the second part, let us suppose the result holds for all derivations of
height r or less, and let 〈P, σ〉 ⇓ R be an assertion whose derivation has height r+
1. Consider the final rule in this derivation; it has one or more premises 〈Pi, σi〉 ⇓
Ri, each with a derivation of height r or less, so by the induction hypothesis we
have [[Pi]](σi) = Ri for each i. To show that [[P]](σ) = R, we need to consider
each possibility for the final rule in turn. All the cases except for rules (18)
and (19) are trivial; let us do rule (16) as an example. Here P is the command
if b then c0 else c1, and R = σ′; and we know by the induction hypothesis that
[[b]](σ) = true and [[c0]](σ) = σ′. But now by clause (16/17) of Note 9 we have

[[P]](σ) =

{
[[c0]](σ) if [[b]](σ) = true
[[c1]](σ) if [[b]](σ) = false = [[c0]](σ) = σ′

Now the two interesting cases. For rule (18), we have P ≡ while b do c and
R = σ, and by the induction hypothesis [[b]](σ) = false. Let hk and h be defined as
in Note 9; then clearly h1(σ) = σ. But h1 ⊆ h, so [[P]](σ) = h(σ) = σ as required.

For rule (19), we have P as above, R = σ′′, and by the induction hypothesis
[[b]](σ) = true, [[c]](σ) = σ′ and [[P]](σ′) = σ′′. Again, let hk and h be as in Note 9, so
that [[P]] = h. Then h(σ′) = σ′′, so by the construction of h, we have hk(σ

′) = σ′′ for
some k. Now by the definition of hk+1 it is clear that hk+1(σ) = σ′′. But now since
hk+1 ⊆ h, we have [[P]](σ) = h(σ) = σ′′ as required. This completes the induction.

[Note: It is quite instructive to think about this argument in terms of the
inductive definition of the evaluation relation E given in Note 4. There we defined
E to be the smallest set of triples (P, σ, R) closed under the evaluation rules.
Suppose we now take F to be the set of triples (P, σ, R) such that [[P]](σ) = R. The
above argument by cases essentially shows that F is closed under the evaluation
rules. Since E is the smallest such set, we may conclude that E ⊆ F , which is
exactly the left-to-right implication of the Theorem.]

(⇐): Suppose that [[P]](σ) = R; we wish to show that 〈P, σ〉 ⇓ R. Recall that
the definition of [[−]] is given by induction on the syntactic structure of P , so
this time we argue by structural induction on P (or by induction on the size of
P , if you prefer), with a separate case for each syntactic construct of IMP. All
the cases are trivial except the one for while . As before, we illustrate the idea by
doing one “base case” (for variables), and one “induction case” (for if-commands).

Suppose P is just a variable X. Then by clause (2) of Note 9, [[P]](σ) = σ(X)
so R = σ(X). But then 〈P, σ〉 ⇓ R immediately by evaluation rule (2).

Now suppose P ≡ if b then c0 else c1, where [[b]](σ) = t say, and [[c0]](σ) = σ′,
[[c1]](σ) = σ′′. Then by clause (16/17) of Note 9, we have

[[P]](σ) =

{
σ′ if t = true
σ′′ if t = false

2

Formal Programming Language Semantics note 11 CS4/MSc/TPG 16.11.02

In addition, by the induction hypothesis we have 〈b, σ〉 = t, 〈c0, σ〉 = σ′, and
〈c1, σ〉 = σ′′. There are now two subcases. If t = true then by an application
of rule (16) we may deduce 〈P, σ〉 = σ′; but also [[P]](σ) = σ′ in this case so we are
done. If t = false, a similar argument applies using rule (17).

Finally the interesting case. Suppose P ≡ while b do c, and that [[P]](σ) = R
Let h, hk be as in Note 9. There are two subcases:

• If [[b]](σ) = false, then h1(σ) = σ so R = h(σ) = σ since h1 ⊆ h. But also
〈b, σ〉 = false by induction hypothesis, and so by rule (18) we have 〈P, σ〉 ⇓ σ.

• Suppose [[b]](σ) = true. Since h(σ) = R, we have hk′(σ) = R for some k′. We
may assume k′ > 1, and take k′ = k + 1. By the definition of hk+1, we have
that R = hk([[c]](σ)); in particular, the value of the right hand side here is
defined. Take σ′ = [[c]](σ) and σ′′ = hk(σ

′). By the induction hypothesis we
have that 〈b, σ〉 ⇓ true, 〈c, σ〉 ⇓ σ′, and (since hk ⊆ h = [[P]]) 〈P, σ′〉 ⇓ σ′′. But
now by rule (19) we may conclude that 〈P, σ〉 ⇓ σ′′ = R as required. �

[Exercise: The two halves of this proof look very similar. Why could we not
roll them together into one single proof by induction?]

All that was a bit of a slog, but the above theorem appears to play a kind of
central role for IMP, in that once we have proved it, a lot of other things we want
to know about IMP flow from it rather easily. (We could of course prove these
other things directly, but by proving the above theorem we factor out most of the
hard work which is done once for all.) We will now look at a few consequences of
the adequacy theorem.

As a first example, we mentioned in Note 4 the following “determinacy” prop-
erties of IMP, but didn’t really prove them properly:

• For all a, σ [resp. b, σ] there is a unique n [t] such that 〈a, σ〉 ⇓ n [〈b, σ〉 ⇓ t].

• For all c, σ there is at most one σ′ such that 〈c, σ〉 ⇓ σ′.

It isn’t too hard to prove these directly (via some tedious inductions), but once we
have the adequacy theorem they follow immediately, since [[a]], [[b]] are (single-
valued) total functions and [[c]] is a (single-valued) partial function.

Compositionality and observational equivalence. For a more substantial ap-
plication of adequacy, let us return to some questions relating to observational
equivalence which we introduced in Note 6. Recall that two terms P1, P2 are func-
tionally equivalent if for all σ and R we have 〈P1, σ〉 ⇓ R iff 〈P2, σ〉 ⇓ R. Clearly,
this is the same as saying that [[P1]] = [[P2]]. Likewise, we say P1, P2 are observa-
tionally equivalent if for all contexts C of appropriate type, [[C[P1]]] = [[C[P2]]]. In
Note 6 we raised the question whether functional equivalence is the same as ob-
servational equivalence. By thinking about the run-time behaviour of programs,
one can see intuitively that the answer is yes, since the only way in which a

3

Formal Programming Language Semantics note 11 CS4/MSc/TPG 16.11.02

subprogram P can affect the result of a larger program is through the result ob-
tained from running P in various initial states. (You may well have thought about
this kind of thing when doing Q.4 of Exercise Sheet 1.) With a bit of effort, one
can turn this intuition into a direct proof in terms of the operational semantics,
but a much simpler and perfectly rigorous argument can now be given using the
denotational semantics.

The argument is very general, and something of the kind will apply when-
ever we have a denotational semantics which is both adequate and composi-
tional. Compositionality is one of the fundamental ideas of denotational seman-
tics, so it is worth taking some time to understand it clearly. First, note that
in the definition of [[−]] (see Note 9), all the clauses have the following form:
if P is a phrase whose immediate subphrases are P1, . . . , Pk, then [[P]] is sim-
ply a function of [[P1]], . . . , [[Pk]]. More formally, for each syntactic construct
K[−1, . . . ,−k] of IMP, there is a fixed function κ such that if P = K[P1, . . . , Pk]
then [[P]] = κ([[P1]], . . . , [[Pk]]).

Next, note that any context C[−] at all can be built up by composing or plug-
ging together various syntactic constructs K[· · ·]. So we have:

Theorem 2 (Compositionality) For any context C[−] of IMP, where − is a place-
holder of type u and C[−] has type u′, there is a function ξ : Du → Du′ such that for
all phrases P of type u we have

[[C[P]]] = ξ([[P]])

PROOF An easy induction on the structure of C[−]. The base case is when
C[−] is just −: here we just take ξ to be the identity function, and the result
is trivial. All the induction cases may be handled together thanks to the above
notation. Suppose C[−] ≡ K[C1[−], . . . , Ck[−]] where K[· · ·] is one of the syntactic
constructs of IMP. (For some of these, k will be 0, but that’s OK.) By the induction
hypothesis, there are functions ξ1, . . . , ξk such that [[Ci[Pi]]] = ξi([[Pi]]) for any Pi

of suitable type. Let κ be the semantic function for K as above, and define
ξ = Λx. κ(ξ1(x), . . . , ξk(x)). It is clear that ξ has the desired property for C[−]. �

It is natural to think of ξ here as the “meaning” of C[−]. To summarize the
theorem, everything we need to know about a term P in order to determine how
P contributes to the meaning of any larger program is encapsulated by [[P]]. It
follows immediately that if [[P1]] = [[P2]] then [[C[P1]]] = [[C[P2]]]; in other words,
functional equivalence implies observational equivalence.

This means that a denotational semantics can be used to give rigorous proofs
of observational equivalence of particular program phrases: to show that P1 and
P2 are observationally equivalent, it is enough to check that [[P1]] = [[P2]]. A
similar statement will also hold for patterns as in Note 6. [Exercise: Formulate a
precise statement to this effect.] One could use this to prove, for example, that
the pairs of patterns in Q.4 of Sheet 1 are indeed observationally equivalent.

John Longley

4

