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Question Answering

• Question

What is a good way to remove wine stains?

• Text available to the machine

Salt is a great way to eliminate wine stains

• What is hard?

– words may be related in other ways, including similarity and gradation
– how to know if words have similar meanings?
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Can we just use a thesaurus?

Problems:

• May not have a thesaurus in every language

• Even if we do, many words and phrases will be missing

So, let’s try to compute similarity automatically.
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Meaning from context(s)

• Consider the example from J&M (quoted from earlier sources):

a bottle of tezgüino is on the table
everybody likes tezgüino
tezgüino makes you drunk
we make tezgüino out of corn

Alex Lascarides FNLP Lecture 15 3



Distributional hypothesis

• perhaps we can infer meaning just by looking at the contexts a word occurs in

• perhaps meaning IS the contexts a word occurs in (Wittgenstein!)

• either way, similar contexts imply similar meanings:

– this idea is known as the distributional hypothesis
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“Distribution”: a polysemous word

• Probability distribution: a function from outcomes to real numbers

• Linguistic distribution: the set of contexts that a particular item (here, word)
occurs in
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Distributional semantics: basic idea

• Represent each word wi as a vector of its contexts

– distributional semantic models also called vector-space models.

• Ex: each dimension is a context word; = 1 if it co-occurs with wi, otherwise 0.

pet bone fur run brown screen mouse fetch

w1 = 1 1 1 1 1 0 0 1
w2 = 1 0 1 0 1 0 1 0
w3 = 0 0 0 1 0 1 1 0

• Note: real vectors would be far more sparse
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Questions to consider

• What defines “context”? (What are the dimensions, what counts as co-
occurrence?)

• How to weight the context words (Boolean? counts? other?)

• How to measure similarity between vectors?

Two kinds of co-occurrence between two words:

First-order co-occurrence: (syntagmatic association)

• Typically nearby each other
wrote is a first-order associate of book

Second-order co-occurrence: (paradigmatic association)

• Have similar neighbours
wrote is a second-order associate of said and remarked
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Defining the context

• Usually ignore stopwords (function words and other very frequent/uninformative
words)

• Usually use a large window around the target word (e.g., 100 words, maybe
even whole document)

• But smaller windows allow for relations other than cooccurrence:
e.g., dependency relation from parser.

• Note: all of these for semantic similarity;
for syntactic similarity, use a small window (1-3 words) and track only frequent
words.

Alex Lascarides FNLP Lecture 15 8

How to weight the context words

• binary indicators not very informative

• presumably more frequent co-occurrences matter more

• but, is frequency good enough?

– frequent words are expected to have high counts in the context vector
– regardless of whether they occur more often with this word than with others
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Collocations

• We want to know which words occur unusually often in the context of w: more
than we’d expect by chance?

• Put another way, what collocations include w?
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Mutual information

• One way: use pointwise mutual information:

PMI(x, y) = log2
P (x, y)

P (x)P (y)

⇐ Actual prob of seeing words x and y together

⇐ Predicted prob of same, if x and y are indep.

• PMI tells us how much more/less likely the cooccurrence is than if the words
were independent
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A problem with PMI

• In practice, PMI is computed with counts (using MLE).

• Result: it is over-sensitive to the chance co-occurrence of infrequent words

• See next slide: ex. PMIs from bigrams with 1 count in 1st 1000 documents of
NY Times corpus
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Example PMIs (Manning & Schütze, 1999, p181)
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Alternatives to PMI for finding collocations

• There are a lot, all ways of measuring statistical (in)dependence.

– Student t-test
– Pearson’s χ2 statistic
– Dice coefficient
– likelihood ratio test (Dunning, 1993)
– Lin association measure (Lin, 1998)
– and many more...

• Of those listed here, Dunning LR test probably most reliable for low counts.

• However, which works best may depend on particular application/evaluation.
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Improving PMI

Rather than using a different method, can modify PMI itself to better handle low
frequencies.

• Use positive PMI (PPMI): change all negative PMI values to 0.

– Because for infrequent words, not enough data to accurately determine
negative PMI values.

• Introduce smoothing in PMI computation.

– See J&M or Levy et al. (2015) for a particularly effective method.
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How to measure similarity

• So, let’s assume we have context vectors for two words ~v and ~w

• Each contains PMI (or PPMI) values for all context words

• One way to think of these vectors: as points in high-dimensional space
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Vector space representation

• Ex. in 2-dim space: cat = (v1, v2), computer = (w1, w2)
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Euclidean distance

• We could measure (dis)similarity using Euclidean distance:
(∑

i(vi − wi)
2
)1/2

• But doesn’t work well if even one dimension has an extreme value
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Dot product

• Another possibility: take the dot product of ~v and ~w:

simDP(~v, ~w) = ~v · ~w
=
∑

i

viwi

– Vectors are longer if they have higher values in each dimension.
– So more frequent words have higher dot products.
– But we don’t want a similarity metric that’s sensitive to word frequency.

Alex Lascarides FNLP Lecture 15 19



Normalized dot product

• Some vectors are longer than others (have higher values):

[5, 2.3, 0, 0.2, 2.1] vs. [0.1, 0.3, 1, 0.4, 0.1]

– If vector is context word counts, these will be frequent words
– If vector is PMI values, these are likely to be infrequent words

• Dot product is generally larger for longer vectors, regardless of similarity

• To correct for this, we normalize: divide by the length of each vector:

simNDP(~v, ~w) = (~v · ~w)/(|~v||~w|)
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Normalized dot product = cosine

• The normalized dot product is just the cosine of the angle between vectors.

• Ranges from -1 (vectors pointing opposite directions) to 1 (same direction
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Other similarity measures

• Again, many alternatives

– Jaccard measure
– Dice measure
– Jenson-Shannon divergence
– etc.

• Again, may depend on particular application/evaluation
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Evaluation

• Extrinsic may involve IR, QA, automatic essay marking, ...

• Intrinsic is often a comparison to psycholinguistic data

– Relatedness judgments
– Word association
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Relatedness judgments

• Participants are asked, e.g.: on a scale of 1-10, how related are the following
concepts?

LEMON FLOWER

• Usually given some examples initially to set the scale , e.g.

– LEMON-TRUTH = 1
– LEMON-ORANGE = 10

• But still a funny task, and answers depend a lot on how the question is asked
(‘related’ vs. ‘similar’ vs. other terms)
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Word association

• Participants see/hear a word, say the first word that comes to mind

• Data collected from lots of people provides probabilities of each answer:

LEMON ⇒

ORANGE 0.16
SOUR 0.11
TREE 0.09
YELLOW 0.08
TEA 0.07
JUICE 0.05
...

Example data from the Edinburgh Associative Thesaurus: http://www.eat.rl.ac.uk/
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Comparing to human data

• Human judgments provide a ranked list of related words/associations for each
word w

• Computer system provides a ranked list of most similar words to w

• Compute the Spearman rank correlation between the lists (how well do the
rankings match?)

• Often report on several data sets, as their details differ
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Learning a more compact space

• So far, our vectors have length V , the size of the vocabulary

• Do we really need this many dimensions?

• Can we represent words in a smaller dimensional space that preserves the
similarity relationships of the larger space?
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Latent Semantic Analysis (LSA)

• One of the earliest methods for reducing dimensions while preserving similarity.

• Uses Singular Value Decomposition, a linear-algebra-based method.

• Converts from sparse vectors with 1000s of dimensions to dense vectors with
10s-100s of dimensions.

• LSA representations actually work better than originals for many tasks.

• More details in optional reading: J&M (3rd ed.) Ch 19.5
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Neural network methods

• Recent (and very hyped) new methods for learning reduced-dimensional
representations (now often called embeddings).

• Ex: train a NN to predict context words based on input word. Use hidden
layer(s) as the input word’s vector representation.

• Deep mathematical similarities to LSA (Levy and Goldberg, 2014), but can be
faster to train.

• Appeared to work better than LSA, but likely due to unfair comparisons (Levy
et al., 2015).

• More details in optional reading: J&M (3rd ed.) Ch 19.6-19.7
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Vector representations in practice

• Very hot topic in NLP

• Embeddings seem to capture both syntactic and semantic information.

• So, used for language modelling and to replace words as ’observations’ in
parsing and other models.

• As noted in Smoothing lecture: this can provide a kind of similarity-based
smoothing (models learn to make similar predictions for similar words).
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Current work: compositionality

• One definition of collocations: non-compositional phrases

– White House: not just a house that is white
– barn raising: involves more than the parts imply

• But a lot of language is compositional

– red barn: just a barn that is red
– wooden plank: nothing special here

• Can we capture compositionality in a vector space model?
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Compositionality in a vector space

• More formally, compositionality implies some operator ⊕ such that

meaning(w1w2) = meaning(w1) ⊕ meaning(w2)

• Current work investigates possible operators

– vector addition (doesn’t work very well)
– tensor product
– nonlinear operations learned by neural networks

• One problem: words like not—themselves more like operators than points in
space.
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Summary

• Distributional semantics: represents word meanings as vectors computed from
their contexts.

– Long sparse vectors of counts, PMI values, or others
– Short dense vectors using LSA, NNets, or others

• Similarity typically measured using cosine distance

• Can work well as input to other systems, but harder to evaluate intrinsically
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