
FNLP Lecture 11
Syntax and parsing

Henry S. Thompson

(including slides from Sharon Goldwater, Alex Lascarides,

Mark Steedman and Philipp Koehn)

28 February 2017

Henry S. Thompson FNLP Lecture 11 28 February 2017

Modelling word behaviour

We’ve seen various ways to model word behaviour.

• Bag-of-words models: ignore word order entirely

• N-gram models: capture a fixed-length history to predict word

sequences.

• HMMs: also capture fixed-length history, using latent variables.

Useful for various tasks, but a really accurate model of language

needs more than a fixed-length history!

Henry S. Thompson FNLP Lecture 11 1

Long-range dependencies

The form of one word often depends on (agrees with) another, even

when arbitrarily long material intervenes.

Sam/Dogs sleeps/sleep soundly
Sam, who is my cousin, sleeps soundly
Dogs often stay at my house and sleep soundly
Sam, the man with red hair who is my cousin, sleeps soundly

We want models that can capture these dependencies.

Henry S. Thompson FNLP Lecture 11 2

Phrasal categories

We may also want to capture substitutability at the phrasal level.

• POS categories indicate which words are substitutable. For

example, substituting adjectives:

I saw a red cat
I saw a former cat
I saw a billowy cat

• Phrasal categories indicate which phrases are substitutable. For

example, substituting noun phrase:

Dogs sleep soundly
My next-door neighbours sleep soundly
Green ideas sleep soundly

Henry S. Thompson FNLP Lecture 11 3

Theories of syntax

A theory of syntax should explain which sentences are well-formed
(grammatical) and which are not.

• Note that well-formed is distinct from meaningful.

• Famous example from Chomsky:

Colorless green ideas sleep furiously

• However we’ll see shortly that the reason we care about syntax is

mainly for interpreting meaning.

Henry S. Thompson FNLP Lecture 11 4

Theories of syntax

We’ll look at two theories of syntax to handle one or both phenomena

above (long-range dependencies, phrasal substitutability):

• Context-free grammar (and variants): today, next class

• Dependency grammar: following class

These can be viewed as different models of language behaviour. As

with other models, we will look at

• What each model can capture, and what it cannot.

• Algorithms that provide syntactic analyses for sentences using

these models (i.e., syntactic parsers).

Henry S. Thompson FNLP Lecture 11 5

Reminder: Context-free grammar

• Two types of grammar symbols:

– terminals (t): words.

– Non-terminals (NT): phrasal categories like S, NP, VP, PP,

with S being the Start symbol. In practice, we sometimes

distinguish pre-terminals (POS tags), a type of NT.

• Rules of the form NT → β, where β is any string of NT’s and t’s.

– Strictly speaking, that’s a notation for a rule.

– There’s also an abbreviated notation for sets of rules with same

LHS: NT → β1 | β2 | β3 | . . .
• A CFG in Chomsky Normal Form only has rules of the form

NTi → NT j NTk or NTi → t j

Henry S. Thompson FNLP Lecture 11 6

CFG example

S → NP VP (Sentences)
NP → D N | Pro | PropN (Noun phrases)
D → PosPro | Art | NP ’s (Determiners)
VP → Vi | Vt NP | Vp NP VP (Verb phrases)
Pro → i | we | you | he | she | him | her (Pronouns)
PosPro → my | our | your | his | her (Possessive pronouns)
PropN → Robin | Jo (Proper nouns)
Art → a | an | the (Articles)
N → man | duck | saw | park | telescope (Nouns)
Vi → sleep | run | duck (Intransitive verbs)
Vt → eat | break | see | saw (Transitive verbs)
Vp → see | saw | heard (Verbs with NP VP args)

Henry S. Thompson FNLP Lecture 11 7

Example syntactic analysis
To show that a sentence is well-formed under this CFG, we must

provide a parse. One way to do this is by drawing a tree:

S

NP

Pro

i

VP

Vt

saw

NP

D

Art

the

N

man

You can think of a tree like this as proving that its leaves are in the

language generated by the grammar.

Henry S. Thompson FNLP Lecture 11 8

Structural Ambiguity

Some sentences have more than one parse: structural ambiguity.

S

NP

Pro

he

VP

Vt

saw

NP

PosPro

her

N

duck

S

NP

Pro

he

VP

Vp

saw

NP

Pro

her

VP

Vi

duck

Here, the structural ambiguity is caused by POS ambiguity in

several of the words. (Both are types of syntactic ambiguity.)

Henry S. Thompson FNLP Lecture 11 9

Attachment ambiguity

Some sentences have structural ambiguity even without part-of-

speech ambiguity. This is called attachment ambiguity.

• Depends on where different phrases attach in the tree.

• Different attachments have different meanings:

I saw the man with the telescope
She ate the pizza on the floor
Good boys and girls get presents from Santa

• Next slides show trees for the first example: prepositional phrase

(PP) attachment ambiguity. (Trees slightly abbreviated...)

Henry S. Thompson FNLP Lecture 11 10

Attachment ambiguity

S

NP

Pro

i

VP

Vt

saw

NP

NP

the man

PP

P

with

NP

the telescope

Henry S. Thompson FNLP Lecture 11 11

Attachment ambiguity

S

NP

Pro

i

VP

Vt

saw

NP

the man

PP

P

with

NP

the telescope

Henry S. Thompson FNLP Lecture 11 12

Parsing algorithms

Goal: compute the structure(s) for an input string given a grammar.

• Ultimately, want to use the structure to interpret meaning.

• As usual, ambiguity is a huge problem.

– For correctness: need to find the right structure to get the right

meaning.

– For efficiency: searching all possible structures can be very slow;

want to use parsing for large-scale language tasks (e.g., used to

create Google’s “infoboxes”).

Henry S. Thompson FNLP Lecture 11 13

Global and local ambiguity

• We’ve already seen examples of global ambiguity: multiple

analyses for a full sentence, such as I saw the man with the telescope

• But local ambiguity is also a big problem: multiple analyses for

parts of sentence.

– the dog bit the child: first three words could be NP (but aren’t).

– Building useless partial structures wastes time.

– Avoiding useless computation is a major issue in parsing.

• Syntactic ambiguity is rampant; humans usually don’t even notice

because we are good at using context/semantics to disambiguate.

Henry S. Thompson FNLP Lecture 11 14

Parser properties

All parsers have two fundamental properties:

• Directionality: the sequence in which the structures are

constructed.

– top-down: start with root category (S), choose expansions,

build down to words.

– bottom-up: build subtrees over words, build up to S.

– Mixed strategies also possible (e.g., left corner parsers)

• Search strategy: the order in which the search space of possible

analyses is explored.

Henry S. Thompson FNLP Lecture 11 15

Example: search space for top-down parser

• Start with S node.

• Choose one of

many possible

expansions.

• Each of which

has children with

many possible

expansions...

• etc

SS S

S S S S S

S

NP VP NP VPaux

S

NP

NP

Henry S. Thompson FNLP Lecture 11 16

Search strategies

• depth-first search: explore one branch of the search space at a

time, as far as possible. If this branch is a dead-end, parser needs

to backtrack.

• breadth-first search: expand all possible branches in parallel (or

simulated parallel). Requires storing many incomplete parses in

memory at once.

• best-first search: score each partial parse and pursue the highest-

scoring options first. (Will get back to this when discussing

statistical parsing.)

Henry S. Thompson FNLP Lecture 11 17

Recursive Descent Parsing

• A recursive descent parser treats a grammar as a specification

of how to break down a top-level goal (find S) into subgoals (find

NP VP).

• It is a top-down, depth-first parser:

– Blindly expand nonterminals until reaching a terminal (word).

– If multiple options available, choose one but store current state

as a backtrack point (in a stack to ensure depth-first.)

– If terminal matches next input word, continue; else, backtrack.

Henry S. Thompson FNLP Lecture 11 18

RD Parsing algorithm

Start with subgoal = S, then repeat until input/subgoals are empty:

• If first subgoal in list is a non-terminal A, then pick an expansion

A→ B C from grammar and replace A in subgoal list with B C

• If first subgoal in list is a terminal w:

– If input is empty, backtrack.

– If next input word is different from w, backtrack.

– If next input word is w, match! i.e., consume input word w and

subgoal w and move to next subgoal.

If we run out of backtrack points but not input, no parse is possible.

Henry S. Thompson FNLP Lecture 11 19

Recursive descent example

Consider a very simple example:

• Grammar contains only these rules:
S→ NP VP VP→ V NN→ bit V→ bit

NP→ DT NN DT→ the NN→ dog V→ dog

• The input sequence is the dog bit

Henry S. Thompson FNLP Lecture 11 20

Further notes

• The above sketch is actually a recognizer: it tells us whether

the sentence has a valid parse, but not what the parse is. For a

parser, we’d need more details to store the structure as it is built.

• We only had one backtrack, but in general things can be much

worse!

– See Inf2a Lecture 17 for a much longer example showing

inefficiency.

– If we have left-recursive rules like NP→ NP PP, we get an infinite

loop!

Henry S. Thompson FNLP Lecture 11 22

Shift-Reduce Parsing

• Search strategy and directionality are orthogonal properties.

• Shift-reduce parsing is depth-first (like RD) but bottom-up
(unlike RD).

• Basic shift-reduce recognizer repeatedly:

– Whenever possible, reduces one or more items from top of

stack that match RHS of rule, replacing with LHS of rule.

– When that’s not possible, shifts an input symbol onto a stack.

• Like RD parser, needs to maintain backtrack points.

Henry S. Thompson FNLP Lecture 11 23

Depth-first parsing in practice

• Depth-first parsers are very efficient for unambiguous structures.

– Widely used to parse/compile programming languages, which

are constructed to be unambiguous.

• But can be massively inefficient (exponential in sentence length)

if faced with local ambiguity.

– Blind backtracking may require re-building the same structure

over and over: so, simple depth-first parsers are not used in

NLP.

– But: if we use a probabilistic model to learn which choices to

make, we can do very well in practice (coming next week...)

Henry S. Thompson FNLP Lecture 11 25

Breadth-first search using dynamic
programming

• With a CFG, you should be able to avoid re-analysing any substring

because its analysis is independent of the rest of the parse.

[he]np [saw her duck]vp

• chart parsing algorithms exploit this fact.

– use dynamic programming to store and reuse sub-parses,

composing them into a full solution.

– So multiple potential parses are explored at once: a breadth-first

strategy.

Henry S. Thompson FNLP Lecture 11 26

Parsing as dynamic programming

• For parsing, subproblems are analyses of substrings, memoized in

chart (aka well-formed substring table, WFST).

• Chart entries are indexed by start and end positions in the

sentence, and correspond to:

– either a complete constituent (sub-tree) spanning those

positions (if working bottom-up),

– or a prediction about what complete constituent might be

found (if working top-down).

Henry S. Thompson FNLP Lecture 11 27

What’s in the chart?

• We assume indices between each word in the sentence:

0 he 1 saw 2 her 3 duck 4

• The chart is a matrix where cell [i, j] holds information about the

word span from position i to position j:

– The root node of any constituent(s) spanning those words

– Pointers to its sub-constituents

– (Depending on parsing method,) predictions about what

constituents might follow the substring.

Henry S. Thompson FNLP Lecture 11 28

Algorithms for Chart Parsing

Many different chart parsing algorithms, including

• the CKY algorithm, which memoizes only complete constituents

• various algorithms that also memoize predictions/partial

constituents

– often using mixed bottom-up and top-down approaches, e.g.,

the Earley algorithm described in J&M, and left-corner parsing.

Henry S. Thompson FNLP Lecture 11 29

