
Foundations of Natural Language Processing
Lecture 6

Spelling correction, edit distance, and EM

Alex Lascarides
(Slides from Alex Lascarides and Sharon Goldwater)

31 January 2020

Alex Lascarides FNLP Lecture 6 31 January 2020

Recap: noisy channel model

A general probabilistic framework, which helps us estimate something hidden
(e.g., for spelling correction, the intended word) via two distributions:

• P (Y ): Language model. The distribution over the words the user intended to
type.

• P (X|Y ): Noise model. The distribution describing what user is likely to type,
given what they meant to type.

Given some particular word(s) x (say, no much effert), we want to recover the
most probable y that was intended.

Alex Lascarides FNLP Lecture 6 1

Recap: noisy channel model

• Mathematically, what we want is

argmax
y

P (y|x) = argmax
y

P (x|y)P (y)

• Assume we have a way to compute P (x|y) and P (y).
Can we do the following?

– Consider all possible intended words y.
– For each y, compute P (x|y)P (y).
– Return the y with highest P (x|y)P (y) value.

Alex Lascarides FNLP Lecture 6 2

Recap: noisy channel model

• Mathematically, what we want is

argmax
y

P (y|x) = argmax
y

P (x|y)P (y)

• Assume we have a way to compute P (x|y) and P (y).
Can we do the following?

– Consider all possible intended words y.
– For each y, compute P (x|y)P (y).
– Return the y with highest P (x|y)P (y) value.

• No! Without constraints, there are an infinite # of possible ys.

Alex Lascarides FNLP Lecture 6 3



Algorithm sketch

• A very basic spelling correction system. Assume:

– we have a large dictionary of real words;
– we only correct non-word → word; and
– we only consider corrections that differ by a single character (insertion,

deletion, or substitution) from the non-word.

• Then we can do the following to correct each non-word x:

– Generate a list of all words y that differ by 1 character from x.
– Compute P (x|y)P (y) for each y and return the y with highest value.

Alex Lascarides FNLP Lecture 6 4

A simple noise model

• Suppose we have a corpus of alignments between actual and corrected
spellings.

actual: n o - m u u c h e f f e r t
| | | | | | | | | | | | | | | |

intended: n o t m - u c h e f f o r t

• This example has

– one substitution (o → e)
– one deletion (t → -, where - is used to show the alignment, but nothing

appears in the text)
– one insertion (-→ u)

Alex Lascarides FNLP Lecture 6 5

A simple noise model

• Assume that typed character xi depends only on intended character yi (ignoring
context).

• So, substitution o → e is equally probable regardless of whether the word is
effort, spoon, or whatever.

• Then we have P (x|y) =

n∏

i=1

P (xi|yi)

For example, P (no|not) = P (n|n)P (o|o)P (-|t)

See Brill and Moore (2000) on course page for an example of a better model.

Alex Lascarides FNLP Lecture 6 6

Estimating the probabilities

• Using our corpus of alignments, we can easily estimate P (xi|yi) for each
character pair.

• Simply count how many times each character (including empty character for
del/ins) was used in place of each other character.

• The table of these counts is called a confusion matrix.

• Then use MLE or smoothing to estimate probabilities.

Alex Lascarides FNLP Lecture 6 7



Example confusion matrix

y\x A B C D E F G H . . .
A 168 1 0 2 5 5 1 3 . . .
B 0 136 1 0 3 2 0 4 . . .
C 1 6 111 5 11 6 36 5 . . .
D 1 17 4 157 6 11 0 5 . . .
E 2 10 0 1 98 27 1 5 . . .
F 1 0 0 1 9 73 0 6 . . .
G 1 3 32 1 5 3 127 3 . . .
H 2 0 0 0 3 3 0 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• We saw G when the intended character was C 36 times.

Alex Lascarides FNLP Lecture 6 8

Big picture again

• We now have a very simple spelling correction system, provided

– we have a corpus of aligned examples, and
– we can easily determine which real words are only one edit away from

non-words.

• There are easy, fairly efficient, ways to do the latter
(see http://norvig.com/spell-correct.html).

• But where do the alignments come from, and what if we want a more general
algorithm that can compute edit distances between any two arbitrary words?

Alex Lascarides FNLP Lecture 6 9

Alignments and edit distance

These two problems reduce to one: find the optimal character alignment
between two words (the one with the fewest character changes: the minimum
edit distance or MED).

• Example: if all changes count equally, MED(stall, table) is 3:

S T A L L
T A L L deletion
T A B L substitution
T A B L E insertion

Alex Lascarides FNLP Lecture 6 10

Alignments and edit distance

These two problems reduce to one: find the optimal character alignment
between two words (the one with the fewest character changes: the minimum
edit distance or MED).

• Example: if all changes count equally, MED(stall, table) is 3:

S T A L L
T A L L deletion
T A B L substitution
T A B L E insertion

• Written as an alignment: S T A L L -
d | | s | i
- T A B L E

Alex Lascarides FNLP Lecture 6 11



More alignments

• There may be multiple best alignments. In this case, two:

S T A L L -
d | | s | i
- T A B L E

S T A - L L
d | | i | s
- T A B L E

• And lots of non-optimal alignments, such as:

S T A - L - L
s d | i | i d
T - A B L E -

S T A L - L -
d d s s i | i
- - T A B L E

Alex Lascarides FNLP Lecture 6 12

How to find an optimal alignment

Brute force: Consider all possibilities, score each one, pick best.

How many possibilities must we consider?

• First character could align to any of:

- - - - - T A B L E -

• Next character can align anywhere to its right

• And so on... the number of alignments grows exponentially with the length of
the sequences.

Maybe not such a good method...

Alex Lascarides FNLP Lecture 6 13

A better idea

Instead we will use a dynamic programming algorithm.

• Other DP (or memoization) algorithms: Viterbi, CKY.

• Used to solve problems where brute force ends up recomputing the same
information many times.

• Instead, we

– Compute the solution to each subproblem once,
– Store (memoize) the solution, and
– Build up solutions to larger computations by combining the pre-computed

parts.

• Strings of length n and m require O(mn) time and O(mn) space.

Alex Lascarides FNLP Lecture 6 14

Intuition

• Minimum distance D(stall, table) must be the minimum of:

– D(stall, tabl) + cost(ins)
– D(stal, table) + cost(del)
– D(stal, tabl) + cost(sub)

• Similarly for the smaller subproblems

• So proceed as follows:

– solve smallest subproblems first
– store solutions in a table (chart)
– use these to solve and store larger subproblems until we get the full solution

Alex Lascarides FNLP Lecture 6 15



A note about costs

• Our first example had cost(ins) = cost(del) = cost(sub) = 1.

• But we can choose whatever costs we want. They can even depend on the
particular characters involved.

– For example: choose cost(sub(c,c′)) to be P (c′|c) from our spelling
correction noise model!

– Then we end up computing the most probable way to change one word to
the other.

• In the following example, we’ll assume cost(ins) = cost(del)= 1
and cost(sub) = 2.

Alex Lascarides FNLP Lecture 6 16

Chart: starting point

T A B L E

0
S
T
A
L
L ?

• Chart[i, j] stores two things:

– D(stall[0..i], table[0..j]): the MED of substrings of length i, j

– Backpointer(s): which sub-alignment(s) used to create this one.

Deletion: Move down Cost =1
Insertion: Move right Cost=1
Substitution: Move down and right Cost=2 (or 0 if the same)

Sum costs as we expand out from cell (0,0) to populate the entire matrix

Alex Lascarides FNLP Lecture 6 17

Filling first cell

T A B L E

0 ←1
S ↑1
T ↑2
A ↑3
L ↑4
L ↑5

• Moving down in chart: means we had a deletion (of S).

• That is, we’ve aligned (S) with (-).

• Add cost of deletion (1) and backpointer.

Alex Lascarides FNLP Lecture 6 18

Rest of first column

T A B L E

0 ←1
S ↑1
T ↑2
A ↑3
L ↑4
L ↑5

• Each move down first column means another deletion.

– D(ST, -) = D(S, -) + cost(del)

Alex Lascarides FNLP Lecture 6 19



Rest of first column

T A B L E

0
S ↑1
T ↑2
A ↑3
L ↑4
L ↑5

• Each move down first column means another deletion.

– D(ST, -) = D(S, -) + cost(del)
– D(STA, -) = D(ST, -) + cost(del)
– etc

Alex Lascarides FNLP Lecture 6 20

Start of second column: insertion

T A B L E

0 ←1
S ↑1
T ↑2
A ↑3
L ↑4
L ↑5

• Moving right in chart (from [0,0]): means we had an insertion.

• That is, we’ve aligned (-) with (T).

• Add cost of insertion (1) and backpointer.

Alex Lascarides FNLP Lecture 6 21

Substitution

T A B L E

0 ←1
S ↑1 ↖2
T ↑2
A ↑3
L ↑4
L ↑5

• Moving down and right: either a substitution or identity.

• Here, a substitution: we aligned (S) to (T), so cost is 2.

• For identity (align letter to itself), cost is 0.

Alex Lascarides FNLP Lecture 6 22

Multiple paths

T A B L E

0 ←1
S ↑1 ↖↑2
T ↑2
A ↑3
L ↑4
L ↑5

• However, we also need to consider other ways to get to this cell:

– Move down from [0,1]: deletion of S, total cost is
D(-, T) + cost(del) = 2.

– Same cost, but add a new backpointer.

Alex Lascarides FNLP Lecture 6 23



Multiple paths

T A B L E

0 ←1
S ↑1 ←↖↑2
T ↑2
A ↑3
L ↑4
L ↑5

• However, we also need to consider other ways to get to this cell:

– Move right from [1,0]: insertion of T, total cost is
D(S, -) + cost(ins) = 2.

– Same cost, but add a new backpointer.

Alex Lascarides FNLP Lecture 6 24

Single best path

T A B L E

0 ←1
S ↑1 ←↖↑2
T ↑2 ↖1
A ↑3
L ↑4
L ↑5

• Now compute D(ST, T). Take the min of three possibilities:

– D(ST, -) + cost(ins) = 2 + 1 = 3.
– D(S, T) + cost(del) = 2 + 1 = 3.
– D(S, -) + cost(ident) = 1 + 0 = 1.

Alex Lascarides FNLP Lecture 6 25

Final completed chart

T A B L E

0 ←1 ←2 ←3 ←4 ←5
S ↑1 ←↖↑2 ←↖↑3 ←4 ←5 ←6
T ↑2 ↖1 ←2 ←3 ←4 ←5
A ↑3 ↑2 ↖1 ←2 ←3 ←4
L ↑4 ↑3 ↑2 ←↖↑3 ↖2 ←3
L ↑5 ↑4 ↑3 ←↖↑4 ↖↑3 ←↖↑4

• Exercises for you:

– How many different optimal alignments are there?
– Reconstruct all the optimal alignments.
– Redo the chart with all costs = 1 (Levenshtein distance)

Alex Lascarides FNLP Lecture 6 26

Alignment and MED: uses?

Computing distances and/or alignments between arbitrary strings can be used for

• Spelling correction (as here)

• Morphological analysis: which words are likely to be related?

• Other fields entirely: e.g., comparing DNA sequences in biology.

• Related algorithms are also used in speech recognition and timeseries data
mining.

Alex Lascarides FNLP Lecture 6 27



Getting rid of hand alignments

Using MED algorithm, we can now produce the character alignments we need to
estimate our error model, given only corrected words.

• Previously, we needed hand annotations like:

actual: n o - m u u c h e f f e r t
| | | | | | | | | | | | | | | |

intended: n o t m - u c h e f f o r t

• Now, our annotation requires less effort:

actual: no muuch effert
intended: not much effort

Alex Lascarides FNLP Lecture 6 28

Catch-22

• But wait! In my example, we used costs of 1 and 2 to compute alignments.

• We actually want to compute our alignments using the costs from our noise
model: the most probable alignment under that model.

• But until we have the alignments, we can’t estimate the noise model...

Alex Lascarides FNLP Lecture 6 29

General formulation

This sort of problem actually happens a lot in NLP (and ML):

• We have some probabilistic model and want to estimate its parameters (here,
the character rewrite probabilities: prob of each typed character given each
intended character).

• The model also contains variables whose value is unknown (here: the correct
character alignments).

• We would be able to estimate the parameters if we knew the values of the
variables...

• ...and conversely, we would be able to infer the values of the variables if we
knew the values of the parameters.

Alex Lascarides FNLP Lecture 6 30

EM to the rescue

Problems of this type can often be solved using a version of Expectation-
Maximization (EM), a general algorithm schema:

1. Initialize parameters to arbitrary values (e.g., set all costs = 1).

2. Using these parameters, compute optimal values for variables (run MED to get
alignments).

3. Now, using those alignments, recompute the parameters (just pretend the
alignments are hand annotations; estimate parameters as from annotated
corpus).

4. Repeat steps 2 and 3 until parameters stop changing.

Alex Lascarides FNLP Lecture 6 31



EM vs. hard EM

• The algorithm on the previous slide is actually “hard EM” (meaning: no
soft/fuzzy decisions)

• Step 2 of true EM does not choose optimal values for variables, instead
computes expected values (we’ll see this for HMMs).

• True EM is guaranteed to converge to a local optimum of the likelihood
function.

• Hard EM also converges but not to anything nicely defined mathematically.
However it’s usually easier to compute and may work fine in practice.

Alex Lascarides FNLP Lecture 6 32

Likelihood function

• Let’s call the parameters of our model θ.

– So for our spelling error model, θ is the set of all character rewrite
probabilities P (xi|yi).

• For any value of θ, we can compute the probability of our dataset P (data|θ).
This is the likelihood.

– If our data includes hand-annotated character alignments, then P (data|θ) =∏n
i=1P (xi|yi)

– If the alignments a are latent, sum over possible alignments:
P (data|θ) =

∑
a

∏n
i=1P (xi|yi, a)

Alex Lascarides FNLP Lecture 6 33

Likelihood function

• The likelihood P (data|θ) is a function of θ, and can have multiple local optima.
Schematically (but θ is really multidimensional):

• EM will converge to one of these; hard EM won’t necessarily.

• Neither is guarateed to find the global optimum!

Alex Lascarides FNLP Lecture 6 34

Summary

Our simple spelling corrector illustrated several important concepts:

• Example of a noise model in a noisy channel model.

• Difference between model definition and algorithm to perform inference.

• Confusion matrix: used here to estimate parameters of noise model, but can
also be used as a form of error analysis.

• Minimum edit distance algorithm as an example of dynamic programming.

• (Hard) EM as a way to “bootstrap” better parameter values when we don’t
have complete annotation.

Alex Lascarides FNLP Lecture 6 35


