Foundations of Natural Language Processing
Lecture 5
More smoothing and the Noisy Channel Model

Alex Lascarides
(Slides based on those from Alex Lascarides, Sharon Goldwater and Philipop Koehn)

28 January 2020

o School of _ ¢
informatics

Alex Lascarides FNLP Lecture 5 28 January 2020

Recap: Smoothing for language models

e N-gram LMs reduce sparsity by assuming each word only depends on a
fixed-length history.

e But even this assumption isn't enough: we still encounter lots of unseen
N-grams Iin a test set or new corpus.

o |f we use MLE, we'll assign O probability to unseen items: useless as an LM.

e Smoothing solves this problem: move probability mass from seen items to
unseen items.

Alex Lascarides FNLP Lecture 5 1

Smoothing methods so far

e Add-a smoothing: (oo =1 or < 1) very simple, but no good when vocabulary
size is large.

e Good-Turing smoothing:

— estimate the probability of seeing (any) item with N, counts (e.g., 0 count)
as the proportion of items already seen with N.,; counts (e.g., 1 count).
— Divide that probability evenly between all possible items with V. counts.

Alex Lascarides FNLP Lecture 5 2

Good-Turing smoothing

e |f n is count of history, then Py = % where

Nc—|—1

¢ =(c+1) N

— N. number of N-grams that occur exactly ¢ times in corpus

— Ny total number of unseen N-grams

e Ex. for trigram probability Pop(three|l spent), then n is count of I spent and
c is count of I spent three.

Alex Lascarides FNLP Lecture 5 3

Problems with Good-Turing

e Assumes we know the vocabulary size (no unseen words)
[but again, use UNK: see J&M 4.3.2]

e Doesn't allow “holes” in the counts (if N; > 0, N;_1 > 0)
[can estimate using linear regression: see J&M 4.5.3]

e Applies discounts even to high-frequency items
[but see J&M 4.5 .3]

e But there's a more fundamental problem...

Alex Lascarides FNLP Lecture 5

Remaining problem

e |n training corpus, suppose we see Scottish beer but neither of
— Scottish beer drinkers

— Scottish beer eaters

e |f we build a trigram model smoothed with Add-a or G-T, which example has
higher probability?

Alex Lascarides FNLP Lecture 5 5

Remaining problem

e Previous smoothing methods assign equal probability to all unseen events.

e Better: use information from lower order N-grams (shorter histories).

— beer drinkers
— beer eaters

e Two ways: interpolation and backoff.

Alex Lascarides FNLP Lecture 5

Interpolation

e Combine higher and lower order N-gram models, since they have different
strengths and weaknesses:

— high-order N-grams are sensitive to more context, but have sparse counts
— low-order N-grams have limited context, but robust counts

e If Py is N-gram estimate (from MLE, GT, etc; N =1 — 3), use:

PiNnT(ws|wy, we) = A1 Pr(ws) + Ao Po(ws|ws) + A3 Ps(ws|wq, ws)

Pint(three|l, spent) = Ay Pi(three) + Ay Pa(three|spent)
+A3 P3(three|l, spent)

Alex Lascarides FNLP Lecture 5 7

Interpolation

e Note that \;s must sum to 1:

1 = ZPINT(’UJ?)\UJl,U&)
w3
= Z (A1 Pr(ws) + Ao Po(ws|wsa) + A3 P3(ws|wi, wa)]
w3
= A\ ZP1(?U3)+>\2 ZPQ(w3’w2)+>\S ZPS(WS‘UH;UJQ)
w3 w3 w3
= A+ A+ A3

Alex Lascarides FNLP Lecture 5

Fitting the interpolation parameters

e In general, any weighted combination of distributions is called a mixture
model.

e So \;s are interpolation parameters or mixture weights.

e The values of the \;s are chosen to optimize perplexity on a held-out data set.

Alex Lascarides FNLP Lecture 5 9

Katz Back-Off

e Solve the problem in a similar way to Good-
Turing smoothing.

e Discount the trigram-based probability
estimates.

e This leaves some probability mass to share

among the estimates from the lower-order
model(s).

Ny, | Backoff =

e Katz backoff: Good-Turing discount the t_Raw"/ Afer Scaled
rigram igram
observed counts, but

smoo-thing

e instead of distributing that mass uniformly
over unseen items, use it for backoff estimates.

Bigram

Alex Lascarides FNLP Lecture 5

10

Back-Off Formulae

e Trust the highest order language model that contains N-gram

Ppo(wilwi—ni1, ..., wi—1) =
[P*(wg|wi— N1 -y wi—1)
If count(wi_NH, e ?,UZ) > 0

Oé(wi—NH, ooy wz’—l) PBO(wz"wi—N—i—% ey wi—l)
else

Alex Lascarides FNLP Lecture 5

11

Back-Off

e Requires

— adjusted prediction model P*(w;|w;_ni1,...,w;—1)
— backoff weights a/(wq, ..., wn_1)

e Exact equations get complicated to make probabilities sum to 1.

e See textbook for details if interested.

Alex Lascarides FNLP Lecture 5

12

Do our smoothing methods work here?

Example from MacKay and Peto (1995):

Imagine, you see, that the language, you see, has, you see, a frequently
occurring couplet, ‘you see’, you see, in which the second word of the
couplet, see, follows the first word, you, with very high probability, you
see. Then the marginal statistics, you see, are going to become hugely
dominated, you see, by the words you and see, with equal frequency, you
see.

e P(see) and P(you) both high, but see nearly always follows you.

e So P(see|novel) should be much lower than P(you|nowvel).

Alex Lascarides FNLP Lecture 5

13

Diversity of histories matters!

e A real example: the word York

— fairly frequent word in Europarl corpus, occurs 477 times
— as frequent as foods, indicates and providers
— In unigram language model: a respectable probability

e However, it almost always directly follows New (473 times)

e So, in unseen bigram contexts, York should have low probability

— lower than predicted by unigram model as used in interpolation/backoff.

Alex Lascarides FNLP Lecture 5

14

Kneser-Ney Smoothing

e Kneser-Ney smoothing takes diversity of histories into account

e Count of distinct histories for a word:
N1_|_(sz') =]{wi_l X c(wi_l,wi) > O}‘
e Recall: maximum likelihood est. of unigram language model:

) = 5 Gw)

e In KN smoothing, replace raw counts with count of histories:

N N1_|_(0’LU7;)
Pt = S N (ow

Alex Lascarides FNLP Lecture 5

Kneser-Ney in practice

e Original version used backoff, later “modified Kneser-Ney" introduced using
interpolation.

e Fairly complex equations, but until recently the best smoothing method for
word n-grams.

e See Chen and Goodman (1999) for extensive comparisons of KN and other
smoothing methods.

e KN (and other methods) implemented in language modelling toolkits like
SRILM (classic), KenLM (good for really big models), OpenGrm Ngram library
(uses finite state transducers), etc.

Alex Lascarides FNLP Lecture 5 16

Are we done with smoothing yet?

We've considered methods that predict rare/unseen words using

e Uniform probabilities (add-«, Good-Turing)
e Probabilities from lower-order n-grams (interpolation, backoff)

e Probability of appearing in new contexts (Kneser-Ney)

What's left?

Alex Lascarides FNLP Lecture 5

17

Word similarity

e Suppose we have two words with C'(w;) > C(ws)

— salmon

— swordfish

e Can P(salmon|caught two) tell us anything about
P(swordfish|caught two)?

e N-gram models: no.

Alex Lascarides FNLP Lecture 5

18

Word similarity in language modeling

e Early version: class-based language models (J&M 4.9.2)

— Define classes ¢ of words, by hand or automatically

- PCL<’U)Z"”UJ¢_1> = P(C@-\ci_l)P(wﬂq) (an HMM)

e Recent version: distributed language models

— Use neural networks to project words into a continuous space, so words that
appear in similar contexts have similar representations (e.g., Mikolov 2012).

Alex Lascarides FNLP Lecture 5 19

Distributed word representations

e Each word represented as high-dimensional vector (50-500 dims)
E.g., salmon is [0.1,2.3,0.6, —4.7, . .]
e Similar words represented by similar vectors
E.g., swordfish is [0.3,2.2,1.2, —3.6, .. .]

e More about this later in the course.

Alex Lascarides FNLP Lecture 5

20

Training the model

e Goal: learn word representations (embeddings) such that words that behave
similarly are close together in high-dimensional space.

salmon .
o« Swordfish

e 2-dimensional example:

computer
L

Alex Lascarides FNLP Lecture 5 21

Training the model

e N-gram LM: collect counts, maybe optimize some parameters

— (Relatively) quick, especially these days (minutes-hours)

e distributed LM: learn the representation for each word

— Use ML methods like neural networks that iteratively improve embeddings
— Can be extremely time-consuming (hours-days)

— Learned embeddings capture both semantic and syntactic similarity.

Alex Lascarides FNLP Lecture 5 22

Using the model

Want to compute P(ws ... w,) for a new sequence.

e N-gram LM: again, relatively quick
e distributed LM: often prohibitively slow for real applications

e An active area of research for distributed LMs

Alex Lascarides FNLP Lecture 5

23

Other Topics in Language Modeling

Many active research areas!

e Modeling issues:

— Morpheme-based language models: preempt vs. preregistration

— Syntactic language models (more later)
— Domain adaptation: when only a small corpus is available in the domain of

Interest

e Implementation issues:

— Speed: both to train, and to use in real-time applications like translation

and speech recognition.
— Disk space and memory: espcially important for mobile devices

Alex Lascarides FNLP Lecture 5 24

Back to the big picture

e However we train our LM, we will want to use it in some application.
e Now, a bit more detail about how that can work.

e \We need another concept from information theory: the Noisy Channel Model.

Alex Lascarides FNLP Lecture 5 25

Noisy channel model

e \We imagine that someone tries to communicate a sequence to us, but noise is

introduced. We only see the output sequence.

symbol
sequence

P(Y)

—>

noisy/
errorful
encoding

P(XIY)

output
sequence

P(X)

Alex Lascarides

FNLP Lecture 5

26

Noisy channel model

e \We imagine that someone tries to communicate a sequence to us, but noise is
introduced. We only see the output sequence.

bol noisy/
SYMBOL g | errorful |=—p» output
sequence €IlCOdiIlg sequence
P(Y) P(XIY) P(X)
Application Y X
Speech recognition | spoken words acoustic signal
Machine translation | words in Ly words in Lo

Spelling correction

Intended words

typed words

Alex Lascarides

FNLP Lecture 5

27

Example: spelling correction

e P(Y): Distribution over the words the user intended to type. A language
model!

e P(X|Y): Distribution describing what user is likely to type, given what they
meant. Could incorporate information about common spelling errors, key
positions, etc. Call it a noise model.

e P(X): Resulting distribution over what we actually see.

e Given some particular observation x (say, effert), we want to recover the most
probable 7 that was intended.

Alex Lascarides FNLP Lecture 5 28

Noisy channel as probabilistic inference

e Mathematically, what we want is argmax, P(y|z).

— Read as “the y that maximizes P(y|x)"

e Rewrite using Bayes' Rule:

P(z|y)P(y)
argmax P(y|lr) = argmax

= argmax P(z[y)P(y)
Yy

Alex Lascarides FNLP Lecture 5

Noisy channel as probabilistic inference

e So to recover the best y, we will need

— a language model, which will be fairly similar for different applications
— a noise model, which depends on the application: acoustic model, translation
model, misspelling model, etc.

e Both are normally trained on corpus data.

Alex Lascarides FNLP Lecture 5 30

You may be wondering

If we can train P(X|Y), why can't we just train P(Y|X)? Who needs Bayes'’
Rule?

e Answer 1: sometimes we do train P(Y|X) directly. Stay tuned...
e Answer 2: training P(X|Y) or P(Y|X) requires input/output pairs, which
are often limited:

— Misspelled words with their corrections; transcribed speech; translated text

But LMs can be trained on huge unannotated corpora: a better model. Can
help improve overall performance.

Alex Lascarides FNLP Lecture 5 31

Model versus algorithm

e We defined a probabilistic model, which says what we should do.

— E.g., for spelling correction: given trained LM and noise model (we haven't
said yet how to acquire the noise model), find the intended word that is
most probable given the observed word.

e \We haven't considered how we would do that.

— A search problem: there are (infinitely) many possible inputs that could
have generated what we saw; which one is best?

— We need to design an algorithm that can solve the problem.

Alex Lascarides FNLP Lecture 5 32

Summary

e Different smoothing methods account for different aspects of sparse data and
word behaviour.

— Interpolation /backoff: leverage advantages of both higher and lower order
N-grams.

— Kneser-Ney smoothing: accounts for diversity of history.
— Distributed representations: account for word similarity.

e Noisy channel model combines LM with noise model to define the “best”
solution for many applications.

e Next time, will consider how to find this solution.

Alex Lascarides FNLP Lecture 5 33

