Fundamentals of Al Alan Smaill

Tutorial for Nov 3/7
See Russell and Norvig, chapters 5 and 6

1. Show how a single constraint on 3 variables such as A + B = C can
be turned into 3 binary constraints by using an extra variable. You can
assume domains are finite. (You want to consider variables corresponding
to pairs of values, with constraints to express that.)

Does this work also for constraints with n variables, n > 3 ?

2. Consider this 2 person game.

There are four squares in a row; each player has a counter. The starting
position is:

A B

Play is in turns, starting with A. Each move is to an adjacent space in
either direction. If the opponent is in an adjacent square, the player may
jump over the opponent to the next open square, if there is one. The
game ends when one player reaches the opposite end on the board. If A
wins, the value to A is +1; If B wins, the value to A is -1.

(a) Sketch the game graph (i.e. represent looping paths in the game tree
as edges back to earlier nodes).

(b) Assign game values to the terminal states.

(c) Mark each node with the backed-up minimax value. You will have
to work out how to deal appropriately with looping paths.

(d) Standard minimax will not work on this example. Suggest how to
adapt it in general to looping situations.

3. It is the case that «—[3 pruning returns the same strategy as does MiInI-
MAX. Show why this is the case.

(Hint: first look at the following case, where the tree is explored only as
far as is shown, and say why the value for the unexplored node is irrelevant
to the final outcome. There is a third branch from the top node still to
be explored. Now try to generalise to trees explored to greater depth.)

MAX

MIN

Figure 1: Alpha-beta example

function ALPHA-BETA-SEARCH(state, game) returns an action
action, state« the a, s in SUCCESSORS[game](state)
such that MIN-VALUE(s, game, —00, +00) is maximized
return action

function MAX-VALUE(state, game, «, 3) returns the minimax value of state
if CuToFF-TEST(state) then return EvAL(state)
for each s in SUCCESSORS(state) do
o« max(x, MIN-VALUE(s, game, «, 3))
if «x > then return (3
return «

function MIN-VALUE(state, game, «, 3) returns the minimax value of state
if CuTOFF-TEST(state) then return EvaL(state)
for each s in SUCCESSORS(state) do
[} < min(3, MAX-VALUE(s, game, «, 3))
if 3 < « then return «
return 3

