
1

Today
See Russell and Norvig, chapters 5 and 6

• Local search for CSPs

• 3SAT

• Adversarial Search
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Reminder: Constraint satisfaction problems
CSP:

state is defined by variables Xi with values from domain Di

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms
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Iterative algorithms for CSPs
Hill-climbing typically works with “complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints
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A standard CSP problem
A famous and much studied problem is known as 3SAT. This is a Boolean CSP
(i.e. the variables take the values true,false).

Each constraint here is of the form

(¬)Vi ∨ (¬)Vj ∨ (¬)Vk

where each variable may be negated. For example, the constraint A ∨ B ∨ ¬C

says that either A is true, or B is true or C is false.

Solving such a constraint problem over n variables is hard.

The only known algorithms for this are exponential in n.

However, we have no proof that there is no polynomial algorithm.

If you find a poly algorithm, you will be famous!!
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Iterative algorithms for 3SAT
Iterative methods are often used for 3SAT. Start with a random assignment of
true/false to variables, and flip values to try to remove conflicts.

A recent favoured algorithm is called WALKSAT :

www.cs.rochester.edu/u/kautz/walksat

The algorithm is simple.
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WALKSAT
Basic algorithm; try repeatedly from different initial assignment;
parametrised by MAX-TRIES and number of repeated attempts

Procedure GSAT

FOR i:= 1 to MAX-TRIES

T := random truth assignment

FOR j:= 1 to MAX-FLIPS

IF T satisfies Constraints then return T

Flip any variable that gives greatest increase

in number of satisfied constraints (can be 0,negative)

end FOR

end FOR

return Failure
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WALKSAT ctd

• can escape from local maxima (allows “negative” moves”)

• restarting also helps; best to use both possibilities

• this is still incomplete in general

• local search is surprisingly good for problems like 3sat; can deal with
problems with thousands of variables and clauses.
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Games vs. search problems
“Unpredictable” opponent ⇒ solution is a strategy
specifying a move for every possible opponent reply

Time limits ⇒ unlikely to find goal, must approximate

Plan of attack:

• Computer considers possible lines of play (Babbage, 1846)

• Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

• Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948)

• First chess program (Turing, 1951)

• Machine learning to improve evaluation accuracy (Samuel, 1952–57)

• Pruning to allow deeper search (McCarthy, 1956)
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Types of games

deterministic chance

perfect information

imperfect information

chess, checkers,
go, othello

backgammon
monopoly

bridge, poker, scrabble
nuclear war
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Game tree (2-player, deterministic, turns)

Example for noughts and crosses (tictactoe).

• Alternate layers in the tree correspond to the different players

• Both players know all about the current state of the game

• Each leaf in the tree represents win for one player (or draw)
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Minimax
Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value

= best achievable payoff against best play

E.g., 2-ply game:
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Minimax algorithm

function Minimax-Decision(state, game) returns an action

action, state← the a, s in Successors(state)

such that Minimax-Value(s, game) is maximized

return action

function Minimax-Value(state, game) returns a utility value

if Terminal-Test(state) then

return Utility(state)

else if max is to move in state then

return the highest Minimax-Value of Successors(state)

else

return the lowest Minimax-Value of Successors(state)
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Properties of minimax
Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(bm)

Space complexity?? O(bm) (depth-first exploration)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games
⇒ exact solution completely infeasible
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Resource limits
Suppose we have 100 seconds, explore 104 nodes/second

⇒ 106 nodes per move

Standard approach:

• cutoff test

e.g., depth limit (perhaps add quiescence search)

• evaluation function

= estimated desirability of position
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Evaluation functions

Black to move 

White slightly better

White to move 

Black winning

For chess, typically linear weighted sum of features
Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)
e.g., w1 = 9 with f1(s) = (number of white queens) – (number of black queens)
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Digression: Exact values don’t matter

MIN

MAX

21

1

42

2

20

1

1 40020

20

Behaviour is preserved under any monotonic transformation of Eval

Only the order matters:
payoff in deterministic games acts as an ordinal utility function
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Cutting off search
MinimaxCutoff is identical to MinimaxValue except

1. Terminal? is replaced by Cutoff?

2. Utility is replaced by Eval

Does it work in practice?

bm = 106, b = 35 ⇒ m = 4

4-ply lookahead is a hopeless chess player!

4-ply ≈ human novice
8-ply ≈ typical PC, human master
12-ply ≈ Deep Blue, Kasparov
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α–β pruning example

MAX
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Properties of α–β

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(bm/2)
⇒ doubles depth of search
⇒ can easily reach depth 8 and play good chess

A simple example of the value of reasoning about which computations are
relevant (a form of metareasoning)
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Why is it called α–β?

..

..

..

MAX

MIN

MAX

MIN V

α is the best value (to max) found so far off the current path; if V is worse than
α, max will avoid it ⇒ prune that branch. Define β similarly for min
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The α–β algorithm

function Alpha-Beta-Search(state, game) returns an action

action, state← the a, s in Successors[game](state)

such that Min-Value(s, game,−∞,+∞) is maximized

return action
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The α–β algorithm ctd.

function Max-Value(state, game,α,β) returns the minimax value of state

if Cutoff-Test(state) then return Eval(state)

for each s in Successors(state) do

α←max(α,Min-Value(s, game,α,β))

if α ≥ β then return β

return α

function Min-Value(state, game,α,β) returns the minimax value of state

if Cutoff-Test(state) then return Eval(state)

for each s in Successors(state) do

β←min( β,Max-Value(s, game,α,β))

if β ≤ α then return α

return β
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Deterministic games in practice
Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used an endgame database defining perfect play for all positions
involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-game
match in 1997. Deep Blue searches 200 million positions per second, uses very
sophisticated evaluation, and undisclosed methods for extending some lines of
search up to 40 ply.

Go: human champions refuse to compete against computers, who are too bad.
In go, b > 300, so most programs use pattern knowledge bases to suggest
plausible moves.
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Summary

• Local search for CSPs

• Adversarial search

• Search in games with perfect information
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