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Today

See Russell and Norvig, chapters 5 and 6

e Local search for CSPs
e 3SAT

e Adversarial Search
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Iterative algorithms for CSPs
Hill-climbing typically works with “complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints
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Reminder: Constraint satisfaction problems
CSP:

state is defined by variables X; with values from domain D;
goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms
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A standard CSP problem

A famous and much studied problem is known as 3SAT. This is a Boolean CSP
(i.e. the variables take the values true,false).

Each constraint here is of the form
ViV (V5 V() Vi
where each variable may be negated. For example, the constraint AV BV —-C
says that either A is true, or B is true or C is false.
Solving such a constraint problem over n variables is hard.
The only known algorithms for this are exponential in n.
However, we have no proof that there is no polynomial algorithm.

If you find a poly algorithm, you will be famous!!
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Iterative algorithms for 3SAT WALKSAT

Iterative methods are often used for 3SAT. Start with a random assignment of Basic algorithm; try repeatedly from different initial assignment;
true/false to variables, and flip values to try to remove conflicts. parametrised by MAX-TRIES and number of repeated attempts
A recent favoured algorithm is called WALKSAT:
www.cs.rochester.edu/u/kautz/walksat Procgdure GSAT
FOR i:= 1 to MAX-TRIES

The algorithm is simple. T := random truth assignment

FOR j:= 1 to MAX-FLIPS
IF T satisfies Constraints then return T
Flip any variable that gives greatest increase
in number of satisfied constraints (can be O,negative)
end FOR
end FOR
return Failure
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WALKSAT ctd Games vs. search problems
e can escape from local maxima (allows “negative” moves") “Unpredictable” opponent = solution is a strategy

specifying a move for every possible opponent reply

e restarting also helps; best to use both possibilities Time limits = unlikely to find goal, must approximate
e this is still incomplete in general Plan of attack:
e local search is surprisingly good for problems like 3SAT; can deal with e Computer considers possible lines of play (Babbage, 1846)
problems with thousands of variables and clauses. e Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
e Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948)
e First chess program (Turing, 1951)
e Machine learning to improve evaluation accuracy (Samuel, 1952-57)
e Pruning to allow deeper search (McCarthy, 1956)
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Types of games

deterministic chance
perfect information chess, checkers, backgammon
go, othello monopoly

imperfect information

bridge, poker, scrabble
nuclear war
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Game tree (2-player, deterministic, turns)

Example for noughts and crosses (tictactoe).

e Alternate layers in the tree correspond to the different players

e Both players know all about the current state of the game

e Each leaf in the tree represents win for one player (or draw)
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Perfect play for deterministic, perfect-information games
Idea: choose move to position with highest minimax value
= best achievable payoff against best play
E.g., 2-ply game:
MAX
MIN
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Minimax algorithm

function MINIMAX-DECISION( state, gamne) returns an action

action, state < the a, sin SUCCESSORS(state)
such that MINIMAX-VALUE(s, game) is maximized
return action

function MINIMAX-VALUE(state, game) returns a utility value

if TERMINAL-TEST(state) then

return UTILITY(state)
else if MAX is to move in state then

return the highest MINIMAX-VALUE of SUCCESSORS(state)
else

return the lowest MINIMAX-VALUE of SUCCESSORS(state)
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Resource limits

Suppose we have 100 seconds, explore 10* nodes/second
= 10° nodes per move

Standard approach:

e cutoff test
e.g., depth limit (perhaps add quiescence search)

e evaluation function
= estimated desirability of position
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Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(b™)
Space complexity?? O(bm) (depth-first exploration)

For chess, b =~ 35, m = 100 for “reasonable” games
= exact solution completely infeasible
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Evaluation functions

— inf

Black to move White to move

White slightly better Black winning

For chess, typically linear weighted sum of features
EVAL(S) = wlfl(s) + w2f2(5) +.o.o+ wnfn(s)
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e.g., w1 =9 with fi(s) = (number of white queens) — (number of black queens)
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Digression: Exact values don’t matter

MAX

Behaviour is preserved under any monotonic transformation of EVAL

Only the order matters:
payoff in deterministic games acts as an ordinal utility function
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a—3 pruning example

MAX

MIN

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

School of

A
MIN ! /} . 20
K 4 1&0 20 400

° .
= Informatics

Cutting off search

MINIMAXCUTOFF is identical to MINIMAX VALUE except
1. TERMINAL? is replaced by CUTOFF?
2. UTILITY is replaced by EVAL

Does it work in practice?
b =10° b=35 = m=4

4-ply lookahead is a hopeless chess player!

4-ply =~ human novice
8-ply ~ typical PC, human master
12-ply = Deep Blue, Kasparov
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Properties of a—3
Pruning does not affect final result
Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(b™/?)
= doubles depth of search
= can easily reach depth 8 and play good chess

A simple example of the value of reasoning about which computations are
relevant (a form of metareasoning)
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Why is it called a—(7?

MAX

MIN

MAX

MIN v

v is the best value (to MAX) found so far off the current path; if V' is worse than
«, MAX will avoid it = prune that branch. Define § similarly for MIN
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The a—( algorithm ctd.

function MAX-VALUE(state, game, o, (3) returns the minimax value of state
if CUTOFF-TEST(state) then return EVAL(state)
for each s in SUCCESSORs(state) do
« «— max(a, MIN-VALUE(s, game, a, 3))
if « > ( then return
return «

function MIN-VALUE(state, game, o, 3) returns the minimax value of state
if CUTOFF-TEST(state) then return EVAL(state)
for each s in SUCCESSORS(state) do
B < min( 8, MAX-VALUE(s, game, o, 3))
if 6 < « then return «
return
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The a—3 algorithm

function ALPHA-BETA-SEARCH(state, game) returns an action
action, state < the a, s in SUCCESSORS[game](state)
such that MIN-VALUE(s, game, — 00, +00) is maximized
return action
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Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used an endgame database defining perfect play for all positions
involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-game
match in 1997. Deep Blue searches 200 million positions per second, uses very
sophisticated evaluation, and undisclosed methods for extending some lines of
search up to 40 ply.

Go: human champions refuse to compete against computers, who are too bad.
In go, b > 300, so most programs use pattern knowledge bases to suggest
plausible moves.
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Summary
e Local search for CSPs
e Adversarial search

e Search in games with perfect information
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