
1

Today
See Russell and Norvig, chapters 5 and 6

• Local search for CSPs

• 3SAT

• Adversarial Search

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

2

Reminder: Constraint satisfaction problems
CSP:

state is defined by variables Xi with values from domain Di

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

3

Iterative algorithms for CSPs
Hill-climbing typically works with “complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

4

A standard CSP problem
A famous and much studied problem is known as 3SAT. This is a Boolean CSP
(i.e. the variables take the values true,false).

Each constraint here is of the form

(¬)Vi ∨ (¬)Vj ∨ (¬)Vk

where each variable may be negated. For example, the constraint A ∨ B ∨ ¬C

says that either A is true, or B is true or C is false.

Solving such a constraint problem over n variables is hard.

The only known algorithms for this are exponential in n.

However, we have no proof that there is no polynomial algorithm.

If you find a poly algorithm, you will be famous!!

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008



5

Iterative algorithms for 3SAT
Iterative methods are often used for 3SAT. Start with a random assignment of
true/false to variables, and flip values to try to remove conflicts.

A recent favoured algorithm is called WALKSAT :

www.cs.rochester.edu/u/kautz/walksat

The algorithm is simple.

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

6

WALKSAT
Basic algorithm; try repeatedly from different initial assignment;
parametrised by MAX-TRIES and number of repeated attempts

Procedure GSAT

FOR i:= 1 to MAX-TRIES

T := random truth assignment

FOR j:= 1 to MAX-FLIPS

IF T satisfies Constraints then return T

Flip any variable that gives greatest increase

in number of satisfied constraints (can be 0,negative)

end FOR

end FOR

return Failure

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

7

WALKSAT ctd

• can escape from local maxima (allows “negative” moves”)

• restarting also helps; best to use both possibilities

• this is still incomplete in general

• local search is surprisingly good for problems like 3sat; can deal with
problems with thousands of variables and clauses.

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

8

Games vs. search problems
“Unpredictable” opponent ⇒ solution is a strategy
specifying a move for every possible opponent reply

Time limits ⇒ unlikely to find goal, must approximate

Plan of attack:

• Computer considers possible lines of play (Babbage, 1846)

• Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

• Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948)

• First chess program (Turing, 1951)

• Machine learning to improve evaluation accuracy (Samuel, 1952–57)

• Pruning to allow deeper search (McCarthy, 1956)

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

www.cs.rochester.edu/u/kautz/walksat


9

Types of games

deterministic chance

perfect information

imperfect information

chess, checkers,
go, othello

backgammon
monopoly

bridge, poker, scrabble
nuclear war

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

10

Game tree (2-player, deterministic, turns)

Example for noughts and crosses (tictactoe).

• Alternate layers in the tree correspond to the different players

• Both players know all about the current state of the game

• Each leaf in the tree represents win for one player (or draw)

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

Game tree for naughts and crosses 11

XX
XX

X
X

X

XX

X X
O

OX O

O

X OX O

X

. . . . . . . . . . . .

. . .

. . .

. . .

XX

�–1  0 +1

XX
X XO

X XOX XO
O
O

X
X XO

OO
O O X X

MAX ( X)

MIN (O)

MAX ( X)

MIN (O)

TERMINAL

Utility

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

12

Minimax
Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value

= best achievable payoff against best play

E.g., 2-ply game:
MAX

3 12 8 642 14 5 2

MIN

3

A
1

A
3

A
2

A
13A

12
A

11
A

21 A
23

A
22

A
33A

32
A

31

3 2 2

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008



13

Minimax algorithm

function Minimax-Decision(state, game) returns an action

action, state← the a, s in Successors(state)

such that Minimax-Value(s, game) is maximized

return action

function Minimax-Value(state, game) returns a utility value

if Terminal-Test(state) then

return Utility(state)

else if max is to move in state then

return the highest Minimax-Value of Successors(state)

else

return the lowest Minimax-Value of Successors(state)

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

14

Properties of minimax
Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(bm)

Space complexity?? O(bm) (depth-first exploration)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games
⇒ exact solution completely infeasible

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

15

Resource limits
Suppose we have 100 seconds, explore 104 nodes/second

⇒ 106 nodes per move

Standard approach:

• cutoff test

e.g., depth limit (perhaps add quiescence search)

• evaluation function

= estimated desirability of position

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

16

Evaluation functions

Black to move 

White slightly better

White to move 

Black winning

For chess, typically linear weighted sum of features
Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)
e.g., w1 = 9 with f1(s) = (number of white queens) – (number of black queens)

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008



17

Digression: Exact values don’t matter

MIN

MAX

21

1

42

2

20

1

1 40020

20

Behaviour is preserved under any monotonic transformation of Eval

Only the order matters:
payoff in deterministic games acts as an ordinal utility function

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

18

Cutting off search
MinimaxCutoff is identical to MinimaxValue except

1. Terminal? is replaced by Cutoff?

2. Utility is replaced by Eval

Does it work in practice?

bm = 106, b = 35 ⇒ m = 4

4-ply lookahead is a hopeless chess player!

4-ply ≈ human novice
8-ply ≈ typical PC, human master
12-ply ≈ Deep Blue, Kasparov

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

19

α–β pruning example

MAX

3 12 8

MIN

3

3

2

2

X X
14

14

5

5

2

2

3

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

20

Properties of α–β

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(bm/2)
⇒ doubles depth of search
⇒ can easily reach depth 8 and play good chess

A simple example of the value of reasoning about which computations are
relevant (a form of metareasoning)

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008



21

Why is it called α–β?

..

..

..

MAX

MIN

MAX

MIN V

α is the best value (to max) found so far off the current path; if V is worse than
α, max will avoid it ⇒ prune that branch. Define β similarly for min

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

22

The α–β algorithm

function Alpha-Beta-Search(state, game) returns an action

action, state← the a, s in Successors[game](state)

such that Min-Value(s, game,−∞,+∞) is maximized

return action

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

23

The α–β algorithm ctd.

function Max-Value(state, game,α,β) returns the minimax value of state

if Cutoff-Test(state) then return Eval(state)

for each s in Successors(state) do

α←max(α,Min-Value(s, game,α,β))

if α ≥ β then return β

return α

function Min-Value(state, game,α,β) returns the minimax value of state

if Cutoff-Test(state) then return Eval(state)

for each s in Successors(state) do

β←min( β,Max-Value(s, game,α,β))

if β ≤ α then return α

return β

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008

24

Deterministic games in practice
Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used an endgame database defining perfect play for all positions
involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-game
match in 1997. Deep Blue searches 200 million positions per second, uses very
sophisticated evaluation, and undisclosed methods for extending some lines of
search up to 40 ply.

Go: human champions refuse to compete against computers, who are too bad.
In go, b > 300, so most programs use pattern knowledge bases to suggest
plausible moves.

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008



25

Summary

• Local search for CSPs

• Adversarial search

• Search in games with perfect information

Alan Smaill Fundamentals of Artificial Intelligence Oct 27 2008


