Today

See Russell and Norvig, chapter 5

- Constraint satisfaction problems (CSPs)
- Heuristics for CSPs
- Constraint propagation
- Local search for CSPs

Reminder: Constraint satisfaction problems

CSP:

state is defined by variables X_i with values from domain D_i goal test is a set of constraints specifying allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful **general-purpose** algorithms with more power than standard search algorithms



informatics

Oct 20, 2008

informatics

Oct 20, 2008

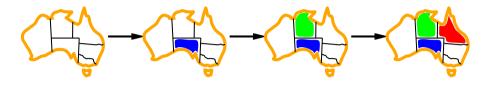
nformatics

Most constraining variable

Tie-breaker among most constrained variables

Most constraining variable:

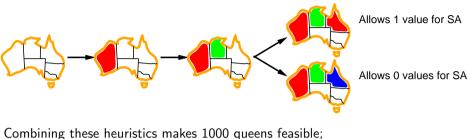
choose the variable with the most constraints on remaining variables



Fundamentals of Artificial Intelligence

Least constraining value

Given a variable, choose the least constraining value: the one that rules out the fewest values in the remaining variables



Fundamentals of Artificial Intelligence

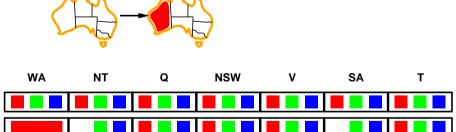
Forward checking

Idea: Keep track of remaining legal values for unassigned variables

recall that straight backtracking search can only deal with 25 queens!

Terminate search	when any varia	able has no lega	al values
\sim			

Alan Smaill



WA

NT

Q

Alan Smaill

NSW

т

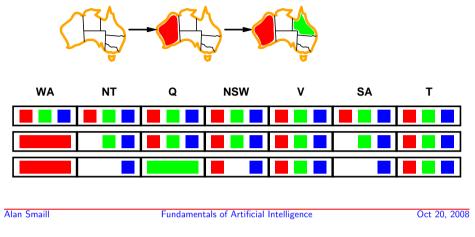
SA

v

nformatics

Forward checking

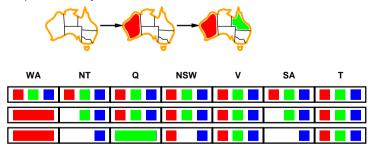
Idea: Keep track of remaining legal values for unassigned variables Terminate search when any variable has no legal values



11 informatics

Constraint propagation

Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:



NT and SA cannot both be blue!

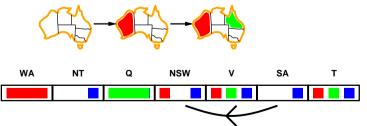
Constraint propagation repeatedly enforces constraints locally



Arc consistency

Simplest form of propagation makes each arc consistent:

 $X \to Y$ is consistent iff for every value x of X there is some allowed y



Alan Smaill

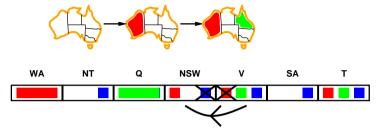
12 informatics

Oct 20, 2008

Arc consistency

Simplest form of propagation makes each arc consistent

 $X \to Y$ is consistent iff for every value x of X there is some allowed y



If X loses a value, neighbours of X need to be rechecked

Alan Smaill Fundamentals of Artificial Intelligence

Oct 20, 2008

.

15 informatics

SA

т

Arc consistency

Arc consistency

NSW

Fundamentals of Artificial Intelligence

 $X \to Y$ is consistent iff for every value x of X there is some allowed y

Simplest form of propagation makes each arc consistent

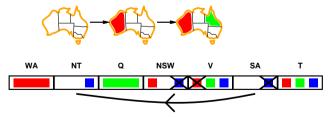
Q

WA

NT

Simplest form of propagation makes each arc consistent

 $X \to Y$ is consistent iff for every value x of X there is some allowed y



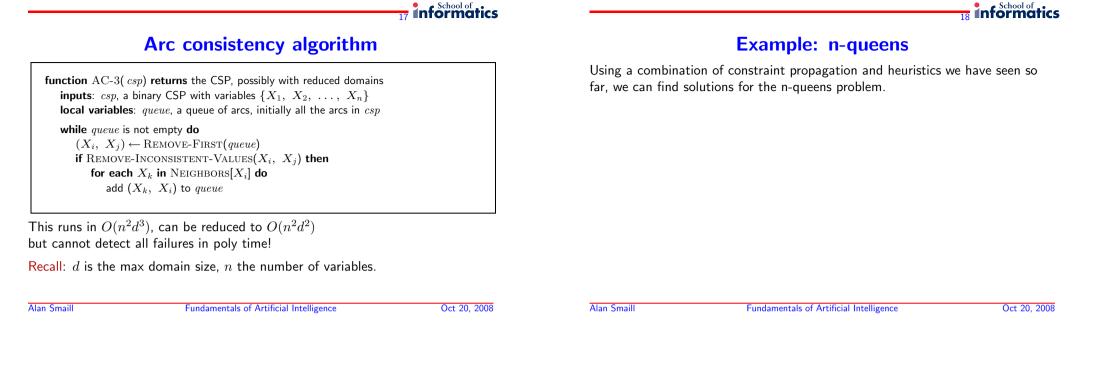
If X loses a value, neighbours of X need to be rechecked Arc consistency detects failure earlier than forward checking Can be run as a preprocessor or after each assignment 16 Informatics

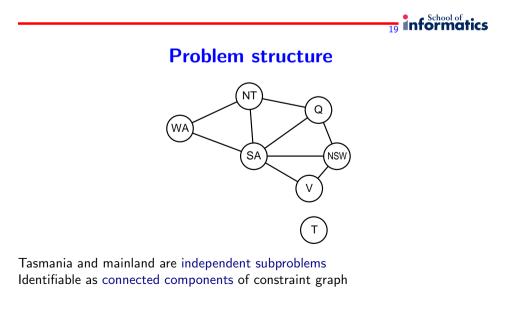
Arc consistency algorithm

Subsidiary function:

```
 \begin{array}{l} \textbf{function} \text{ REMOVE-INCONSISTENT-VALUES}(X_i, X_j) \textbf{ returns } \text{true iff we remove a value} \\ removed \leftarrow false \\ \textbf{for each } x \textbf{ in } \text{DOMAIN}[X_i] \textbf{ do} \\ \textbf{if no value } y \textbf{ in } \text{DOMAIN}[X_j] \\ & \text{ allows } (x,y) \textbf{ to satisfy the constraint between } X_i \textbf{ and } X_j \\ & \textbf{ then delete } x \textbf{ from } \text{DOMAIN}[X_i]; \ removed \leftarrow true \\ \textbf{return } removed \end{array}
```

Alan Smaill





Problem structure contd.

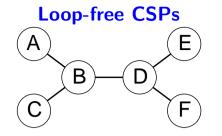
Suppose divide problem into independent subproblems, where each subproblem has \boldsymbol{c} variables out of \boldsymbol{n} total

Worst-case solution cost is $n/c \cdot d^c$, linear in n

E.g., n = 80, d = 2, c = 20

- $2^{80}=\rm 4$ billion years at 10 million nodes/sec
- $4 \cdot 2^{20} =$ 0.4 seconds at 10 million nodes/sec

²¹ informatics



Theorem: if the constraint graph has no loops, the CSP can be solved in ${\cal O}(n\,d^2)$ time

Compare to general CSPs, where worst-case time is $O(d^n)$

This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Alan Smaill	Fundamentals of Artificial Intelligence	Oct 20, 2008

23 informatics

Iterative algorithms for CSPs

Hill-climbing typically works with "complete" states, i.e., all variables assigned

To apply to CSPs:

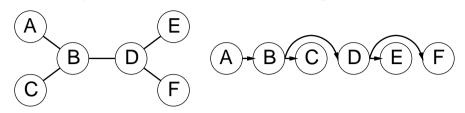
- allow states with unsatisfied constraints
- operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by **min-conflicts** heuristic: choose value that violates the fewest constraints i.e., hillclimb with h(n) = total number of violated constraints

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering



- 2. For *j* from *n* down to 2, apply REMOVEINCONSISTENT($Parent(X_j), X_j$)
- 3. For j from 1 to n, assign X_j consistently with $Parent(X_j)$

Alan Smaill

Fundamentals of Artificial Intelligence

Oct 20, 2008

nformatics

nformatics

tics

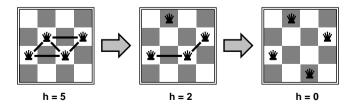
Example: 4-Queens

States: 4 queens in 4 columns ($4^4 = 256$ states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks



Example: 4-Queens as a CSP

Assume one queen in each column. Which row does each one go in?

Variables Q_1 , Q_2 , Q_3 , Q_4 Domains $D_i = \{1, 2, 3, 4\}$ Constraints $Q_i \neq Q_j$ (cannot be in same row) $|Q_i - Q_j| \neq |i - j|$ (or same diagonal) Translate each constraint into set of allowable values for its variables

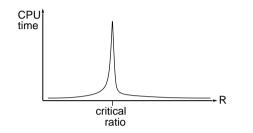
E.g., values for (Q_1, Q_2) are (1, 3) (1, 4) (2, 4) (3, 1) (4, 1) (4, 2)

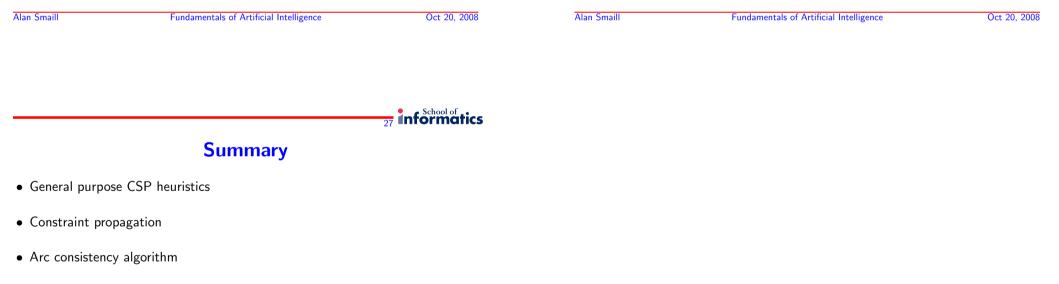
Performance of min-conflicts

nformatics

Given random initial state, can solve *n*-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio $R = \frac{\text{number of constraints}}{\text{number of variables}}$





• Local search for CSPs