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Today

See Russell and Norvig, chapter 5

• Constraint satisfaction problems (CSPs)

• Heuristics for CSPs

• Constraint propagation

• Local search for CSPs
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Reminder: Constraint satisfaction problems

CSP:
state is defined by variables Xi with values from domain Di

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms
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Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?

2. In what order should its values be tried?

3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?
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Most constrained variable

Most constrained variable:
choose the variable with the fewest legal values
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Most constraining variable

Tie-breaker among most constrained variables

Most constraining variable:
choose the variable with the most constraints on remaining variables
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Least constraining value

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

Allows 1 value for SA

Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible;
recall that straight backtracking search can only deal with 25 queens!
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Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T
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Forward checking
Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values
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Constraint propagation

Forward checking propagates information from assigned to unassigned variables,
but doesn’t provide early detection for all failures:

WA NT Q NSW V SA T

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally
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Arc consistency

Simplest form of propagation makes each arc consistent:

X → Y is consistent iff for every value x of X there is some allowed y

WA NT Q NSW V SA T
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Arc consistency
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If X loses a value, neighbours of X need to be rechecked
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Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbours of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment
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Arc consistency algorithm

Subsidiary function:

function Remove-Inconsistent-Values( Xi, Xj) returns true iff we remove a value

removed← false

for each x in Domain[Xi] do

if no value y in Domain[Xj]

allows (x,y) to satisfy the constraint between Xi and Xj

then delete x from Domain[Xi]; removed← true

return removed
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Arc consistency algorithm

function AC-3( csp) returns the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables {X1, X2, . . . , Xn}

local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do

(Xi, Xj)←Remove-First(queue)

if Remove-Inconsistent-Values(Xi, Xj) then

for each Xk in Neighbors[Xi] do

add (Xk, Xi) to queue

This runs in O(n2d3), can be reduced to O(n2d2)
but cannot detect all failures in poly time!

Recall: d is the max domain size, n the number of variables.
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Example: n-queens

Using a combination of constraint propagation and heuristics we have seen so
far, we can find solutions for the n-queens problem.
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Problem structure

Victoria

WA

NT

SA

Q

NSW

V

T

Tasmania and mainland are independent subproblems
Identifiable as connected components of constraint graph
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Problem structure contd.

Suppose divide problem into independent subproblems, where each subproblem
has c variables out of n total

Worst-case solution cost is n/c · dc, linear in n

E.g., n =80, d= 2, c= 20
280 = 4 billion years at 10 million nodes/sec
4 · 220 = 0.4 seconds at 10 million nodes/sec
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Loop-free CSPs

A

B

C

D

E

F

Theorem: if the constraint graph has no loops, the CSP can be solved in
O(nd2) time

Compare to general CSPs, where worst-case time is O(dn)

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions
and the complexity of reasoning.
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Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering

A

B

C

D

E

F

A B C D E F

2. For j from n down to 2, apply RemoveInconsistent(Parent(Xj),Xj)

3. For j from 1 to n, assign Xj consistently with Parent(Xj)
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Iterative algorithms for CSPs

Hill-climbing typically works with “complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints
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Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

h = 5 h = 2 h = 0
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Example: 4-Queens as a CSP

Assume one queen in each column. Which row does each one go in?

Variables Q1, Q2, Q3, Q4

Domains Di = {1, 2, 3, 4}
Constraints
Qi 6= Qj (cannot be in same row)
|Qi − Qj| 6= |i − j| (or same diagonal)

Translate each constraint into set of allowable values for its variables

E.g., values for (Q1, Q2) are (1, 3) (1, 4) (2, 4) (3, 1) (4, 1) (4, 2)
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Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP

except in a narrow range of the ratio R = number of constraints
number of variables

R

CPU
time

critical
   ratio
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Summary

• General purpose CSP heuristics

• Constraint propagation

• Arc consistency algorithm

• Local search for CSPs
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